本博文是对前面两篇tensorflow的博文的一个继续,对环境的更新。

基于tensorflow的MNIST手写识别

安装tensorflow,那叫一个坑啊

主要出发点:

上述两篇博文的程序运行的环境,其实是没有用到GPU的。本篇博文,介绍如何利用GPU。

首先通过pip重新安装一个支持gpu的tensorflow,采用upgrade的方式进行。

[root@bogon tensorflow]# pip install --upgrade tensorflow-gpu
Collecting tensorflow-gpu
Downloading tensorflow_gpu-1.0.-cp27-cp27mu-manylinux1_x86_64.whl (.8MB)
% |████████████████████████████████| .8MB .6kB/s
Requirement already up-to-date: protobuf>=3.1. in /usr/lib64/python2./site-packages (from tensorflow-gpu)
Requirement already up-to-date: six>=1.10. in /usr/lib/python2./site-packages (from tensorflow-gpu)
Requirement already up-to-date: wheel in /usr/lib/python2./site-packages (from tensorflow-gpu)
Requirement already up-to-date: mock>=2.0. in /usr/lib/python2./site-packages (from tensorflow-gpu)
Requirement already up-to-date: numpy>=1.11. in /usr/lib64/python2./site-packages (from tensorflow-gpu)
Requirement already up-to-date: setuptools in /usr/lib/python2./site-packages (from protobuf>=3.1.->tensorflow-gpu)
Requirement already up-to-date: funcsigs>=; python_version < "3.3" in /usr/lib/python2./site-packages (from mock>=2.0.->tensorflow-gpu)
Requirement already up-to-date: pbr>=0.11 in /usr/lib/python2./site-packages (from mock>=2.0.->tensorflow-gpu)
Requirement already up-to-date: appdirs>=1.4. in /usr/lib/python2./site-packages (from setuptools->protobuf>=3.1.->tensorflow-gpu)
Requirement already up-to-date: packaging>=16.8 in /usr/lib/python2./site-packages (from setuptools->protobuf>=3.1.->tensorflow-gpu)
Requirement already up-to-date: pyparsing in /usr/lib/python2./site-packages (from packaging>=16.8->setuptools->protobuf>=3.1.->tensorflow-gpu)
Installing collected packages: tensorflow-gpu
Successfully installed tensorflow-gpu-1.0.

这个过程顺利完成。

然后,将MNIST的手写识别程序,在运行一下,验证一下,是否启用GPU。

[root@bogon tensorflow]# python mnist_demo1.py
I tensorflow/stream_executor/dso_loader.cc:] successfully opened CUDA library libcublas.so.8.0 locally
I tensorflow/stream_executor/dso_loader.cc:126] Couldn't open CUDA library libcudnn.so.5. LD_LIBRARY_PATH: /usr/local/cuda-8.0/lib64:
I tensorflow/stream_executor/cuda/cuda_dnn.cc:3517
] Unable to load cuDNN DSO
I tensorflow/stream_executor/dso_loader.cc:] successfully opened CUDA library libcufft.so.8.0 locally
I tensorflow/stream_executor/dso_loader.cc:] successfully opened CUDA library libcuda.so. locally
I tensorflow/stream_executor/dso_loader.cc:] successfully opened CUDA library libcurand.so.8.0 locally
Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
W tensorflow/core/platform/cpu_feature_guard.cc:] The TensorFlow library wasn't compiled to use SSE3 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
I tensorflow/core/common_runtime/gpu/gpu_device.cc:] Found device with properties:
name: GeForce GTX
major: minor: memoryClockRate (GHz) 1.7335
pciBusID ::00.0
Total memory: .92GiB
Free memory: .81GiB
I tensorflow/core/common_runtime/gpu/gpu_device.cc:] DMA:
I tensorflow/core/common_runtime/gpu/gpu_device.cc:] : Y
I tensorflow/core/common_runtime/gpu/gpu_device.cc:] Creating TensorFlow device (/gpu:) -> (device: , name: GeForce GTX , pci bus id: ::00.0)
F tensorflow/stream_executor/cuda/cuda_dnn.cc:] Check failed: s.ok() could not find cudnnCreate in cudnn DSO; dlerror: /usr/lib/python2./site-packages/tensorflow/python/_pywrap_tensorflow.so: undefined symbol: cudnnCreate
Aborted (core dumped)

上面红色部分报错了,找不到cudnn的so文件,进入到cuda的安装路径,查看是否有这个so。

[root@bogon lib64]# ll libcudnn
libcudnn.so.5.1 libcudnn.so.5.1. libcudnn_static.a

的确没有libcudnn.so.5的文件。

下面,建立一个软连接,将libcudnn.so.5指向libcudnn.so.5.1。

[root@bogon lib64]# ln -s libcudnn.so.5.1 libcudnn.so.5
[root@bogon lib64]# ll libcudnn*
lrwxrwxrwx. root root Mar : libcudnn.so. -> libcudnn.so.5.1
lrwxrwxrwx. root root Mar : libcudnn.so.5.1 -> libcudnn.so.5.1.
-rwxr-xr-x. root root Mar : libcudnn.so.5.1.
-rw-r--r--. root root Mar : libcudnn_static.a

现在,有了这个libcudnn.so.5的文件了。

再次验证mnist的手写识别程序。

[root@bogon tensorflow]# python mnist_demo1.py
I tensorflow/stream_executor/dso_loader.cc:] successfully opened CUDA library libcublas.so.8.0 locally
I tensorflow/stream_executor/dso_loader.cc:] successfully opened CUDA library libcudnn.so. locally
I tensorflow/stream_executor/dso_loader.cc:] successfully opened CUDA library libcufft.so.8.0 locally
I tensorflow/stream_executor/dso_loader.cc:] successfully opened CUDA library libcuda.so. locally
I tensorflow/stream_executor/dso_loader.cc:] successfully opened CUDA library libcurand.so.8.0 locally
Extracting MNIST_data/train-images-idx3-ubyte.gz
Extracting MNIST_data/train-labels-idx1-ubyte.gz
Extracting MNIST_data/t10k-images-idx3-ubyte.gz
Extracting MNIST_data/t10k-labels-idx1-ubyte.gz
W tensorflow/core/platform/cpu_feature_guard.cc:] The TensorFlow library wasn't compiled to use SSE3 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
I tensorflow/core/common_runtime/gpu/gpu_device.cc:] Found device with properties:
name: GeForce GTX
major: minor: memoryClockRate (GHz) 1.7335
pciBusID ::00.0
Total memory: .92GiB
Free memory: .81GiB
I tensorflow/core/common_runtime/gpu/gpu_device.cc:] DMA:
I tensorflow/core/common_runtime/gpu/gpu_device.cc:] : Y
I tensorflow/core/common_runtime/gpu/gpu_device.cc:] Creating TensorFlow device (/gpu:) -> (device: , name: GeForce GTX , pci bus id: ::00.0)
0.9092

到现在为止,我的tensorflow的运行环境,已经是基于GPU的了。

下面附上测试中的mnist_demo1.py的内容:

#!/usr/bin/env python
# -*- coding: utf- -*- import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data
mnist = input_data.read_data_sets("MNIST_data", one_hot=True) sess = tf.InteractiveSession() x = tf.placeholder("float", shape=[None, ])
y_ = tf.placeholder("float", shape=[None, ]) w = tf.Variable(tf.zeros([,]))
b = tf.Variable(tf.zeros([])) init = tf.global_variables_initializer()
sess.run(init) y = tf.nn.softmax(tf.matmul(x, w) + b) cross_entropy = -tf.reduce_sum(y_*tf.log(y)) train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy) for i in range():
batch = mnist.train.next_batch()
train_step.run(feed_dict={x: batch[], y_: batch[]}) correct_prediction = tf.equal(tf.argmax(y,), tf.argmax(y_,))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) print accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels})

最后说明下,上述WARNING部分:

W tensorflow/core/platform/cpu_feature_guard.cc:] The TensorFlow library wasn't compiled to use SSE3 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.

暂时没有关注,所知道的处理办法,就是用bazel进行源码安装tensorflow可以解决这个问题。由于不是太影响实验,暂且不关注。

Tensorflow安装环境更新的更多相关文章

  1. TensorFlow安装环境的误区

    安装py一定要注意安装的版本,我一开始安装的3.7版本的,现在还没有支持,另外,看清楚自己电脑是32位还是64位的

  2. 【吴恩达课程使用】keras cpu版安装【接】- anaconda (python 3.7) win10安装 tensorflow 1.8 cpu版

    一.确认tensorflow的版本: 接上一条tensorflow的安装,注意版本不匹配会出现很多问题!:[吴恩达课程使用]anaconda (python 3.7) win10安装 tensorfl ...

  3. 深度学习入门篇--手把手教你用 TensorFlow 训练模型

    欢迎大家前往腾讯云技术社区,获取更多腾讯海量技术实践干货哦~ 作者:付越 导语 Tensorflow在更新1.0版本之后多了很多新功能,其中放出了很多用tf框架写的深度网络结构(https://git ...

  4. ArXiv最受欢迎开源深度学习框架榜单:TensorFlow第一,PyTorch第四

    [导读]Kears作者François Chollet刚刚在Twitter贴出最近三个月在arXiv提到的深度学习框架,TensorFlow不出意外排名第一,Keras排名第二.随后是Caffe.Py ...

  5. 【转载】史上最全:TensorFlow 好玩的技术、应用和你不知道的黑科技

    [导读]TensorFlow 在 2015 年年底一出现就受到了极大的关注,经过一年多的发展,已经成为了在机器学习.深度学习项目中最受欢迎的框架之一.自发布以来,TensorFlow 不断在完善并增加 ...

  6. Tensorflow物体检测(Object Detection)API的使用

    Tensorflow在更新1.2版本之后多了很多新功能,其中放出了很多用tf框架写的深度网络结构(看这里),大大降低了吾等调包侠的开发难度,无论是fine-tuning还是该网络结构都方便了不少.这里 ...

  7. Tensorflow & Python3 做神经网络(视频教程)

    Tensorflow 简介 1.1 科普: 人工神经网络 VS 生物神经网络 1.2 什么是神经网络 (Neural Network) 1.3 神经网络 梯度下降 1.4 科普: 神经网络的黑盒不黑 ...

  8. Centos7安装TensorFlow

    TensorFlow也火了一段时间,想想既然要研究NLP.为什么不好好应用一下Google开源的Deep Learning平台呢,一切还是先从搭建好开发环境開始. 非常多大神们也做了这方面的工作.汲取 ...

  9. Tensorflow代码解析(一)

    http://www.leiphone.com/news/201702/n0uj58iHaNpW9RJG.html?utm_source=tuicool&utm_medium=referral ...

随机推荐

  1. C# Notepad++ 环境配置

    第一种方法,使用NppExec插件 1.下载安装插件 NppExec https://nchc.dl.sourceforge.net/project/npp-plugins/NppExec/NppEx ...

  2. 指定某个div随着指定大div滚动,而不是随着整个窗口固定不动

    <!DOCTYPE html><html lang="en"><head> <meta charset="UTF-8" ...

  3. 看我怎么扒掉CSDN首页的底裤(python selenium+phantomjs爬取CSDN首页内容)

    这里只是学习一下动态加载页面内容的抓取,并不适用于所有的页面. 使用到的工具就是python selenium和phantomjs,另外调试的时候还用了firefox的geckodriver.exe. ...

  4. wx小程序用canvas生成图片流程与注意事项

    1.需要画入canvas的 图片都需要先缓存到本地 let ps = [] ps.push(that.loadImageFun(this.statusInfo.avatar_url, "he ...

  5. Centos7防火墙开放8080端口

    查看已经开发的端口: firewall-cmd --list-ports 开启端口: firewall-cmd --zone=public --add-port=8080/tcp --permanen ...

  6. 【Python】Excel操作-1

    #练习:创建Excel 如果要创建的Excel已经存在并打开,会报错 from openpyxl import Workbook wb=Workbook() #创建文件对象 ws=wb.active ...

  7. 【转载】 火爆的996.ICU项目正在酝酿开源许可证 禁止996公司使用

    原文地址: https://www.cnbeta.com/articles/tech/832449.htm ---------------------------------------------- ...

  8. 我的第一个Python程序,定义主函数,eval、format函数详解,

    程序实例: #第一个py小程序 def main(): f = eval(input("输入一个数值:")) p=f*(5/9) print("现在的值为:{0:3.3f ...

  9. angular checkbox

    Error: ngModel:constexpr Non-Constant Expression 1.3版本 <input type="checkbox" ng-model= ...

  10. Unity物品栏、商城3D物品的显示插件

    UI显示3D模型插件 本文提供全流程,中文翻译. Chinar 坚持将简单的生活方式,带给世人!(拥有更好的阅读体验 -- 高分辨率用户请根据需求调整网页缩放比例) Chinar -- 心分享.心创新 ...