P4827 [国家集训队] Crash 的文明世界
传送门:洛谷
题目大意:设$$S(i)=\sum_{j=1}^ndis(i,j)^k$$,求$S(1),S(2),\ldots,S(n)$。
数据范围:$n\leq 50000,k\leq 150$
这道题,看见$k$次方和就直接上斯特林数。
$$S(x)=\sum_{i=0}^ki!S(k,i)\sum_{y=1}^nC_{dis(x,y)}^i$$
然后我们考虑求最后一项。
设$$up_{x,t}=\sum_{y\notin x}C_{dis(x,y)}^t,dn_{x,t}=\sum_{y\in x}C_{dis(x,y)}^t$$
我们先考虑$dn$。
$$dn_{x,t}=\sum_{(x,v)}\sum_{y\in v}C_{dis(v,y)+1}^t$$
$$=\sum_{(x,v)}\sum_{y\in v}(C_{dis(v,y)}^t+C_{dis(v,y)}^{t-1})$$
$$=\sum_{(x,v)}(dn_{v,t}+dn_{v,t-1})$$
然后考虑$up$
$$up_{x,t}=\sum_{v\notin fa}C_{dis(v,fa)+1}^t+\sum_{v\in fa}C_{dis(v,fa)+1}^t-\sum_{v\in x}C_{dis(v,x)+2}^t$$
$$=up_{fa,t}+up_{fa,t-1}+dn_{fa,t}+dn_{fa,t-1}-dn_{x,t}-2dn_{x,t-1}-dn_{x,t-2}$$
其中$up_{1,t}=0$
然后把式子直接输进去就可以了。
#include<cstdio>
#define Rint register int
using namespace std;
const int N = , K = , mod = ;
int n, k, head[N], to[N << ], nxt[N << ], S[K][K], fac[K];
inline void add(int a, int b){
static int cnt = ;
to[++ cnt] = b; nxt[cnt] = head[a]; head[a] = cnt;
}
int dn[N][K], up[N][K];
inline void dfs1(int x, int f){
dn[x][] = ;
for(Rint i = head[x];i;i = nxt[i])
if(to[i] != f){
dfs1(to[i], x);
dn[x][] = (dn[x][] + dn[to[i]][]) % mod;
for(Rint t = ;t <= k;t ++)
dn[x][t] = (dn[to[i]][t] + dn[to[i]][t - ] + dn[x][t]) % mod;
}
}
inline void dfs2(int x, int f){
for(Rint i = head[x];i;i = nxt[i])
if(to[i] != f){
up[to[i]][] = (up[x][] + dn[x][] - dn[to[i]][] + mod) % mod;
up[to[i]][] = (up[x][] + up[x][] + dn[x][] + dn[x][] - dn[to[i]][] - * dn[to[i]][] + * mod) % mod;
for(Rint t = ;t <= k;t ++)
up[to[i]][t] = (up[x][t] + up[x][t - ] + dn[x][t] + dn[x][t - ] - dn[to[i]][t] - * dn[to[i]][t - ] - dn[to[i]][t - ] + * mod) % mod;
dfs2(to[i], x);
}
}
int main(){
scanf("%d%d", &n, &k);
S[][] = ;
for(Rint i = ;i <= k;i ++)
for(Rint j = ;j <= k;j ++)
S[i][j] = (S[i - ][j - ] + S[i - ][j] * j) % mod;
fac[] = ;
for(Rint i = ;i <= k;i ++) fac[i] = i * fac[i - ] % mod;
for(Rint i = ;i < n;i ++){
int a, b;
scanf("%d%d", &a, &b);
add(a, b); add(b, a);
}
dfs1(, ); dfs2(, );
for(Rint x = ;x <= n;x ++){
int ans = ;
for(Rint i = ;i <= k;i ++)
ans = (ans + fac[i] * S[k][i] % mod * (up[x][i] + dn[x][i]) % mod) % mod;
printf("%d\n", ans);
}
}
P4827 [国家集训队] Crash 的文明世界的更多相关文章
- 洛谷P4827 [国家集训队] Crash 的文明世界 [斯特林数,组合数,DP]
传送门 思路 又见到这个\(k\)次方啦!按照套路,我们将它搞成斯特林数: \[ ans_x=\sum_{i=0}^k i!S(k,i)\sum_y {dis(x,y) \choose i} \] 前 ...
- P4827 [国家集训队] Crash 的文明世界(第二类斯特林数+树形dp)
传送门 对于点\(u\),所求为\[\sum_{i=1}^ndis(i,u)^k\] 把后面那堆东西化成第二类斯特林数,有\[\sum_{i=1}^n\sum_{j=0}^kS(k,j)\times ...
- 洛谷 P4827 [国家集训队] Crash 的文明世界
题目描述 给你一棵 n 个点的树,对于树上的每个节点 i,求 \(\sum_{j=1}^ndis(i,j)^k\).其中 \(dis(i,j)\) 为两点在树上的距离. 输入格式 第一行两个整 ...
- [国家集训队] Crash 的文明世界(第二类斯特林数)
题目 [国家集训队] Crash 的文明世界 前置 斯特林数\(\Longrightarrow\)斯特林数及反演总结 做法 \[\begin{aligned} ans_x&=\sum\limi ...
- 国家集训队 Crash 的文明世界(第二类斯特林数+换根dp)
题意 题目链接:https://www.luogu.org/problem/P4827 给定一棵 \(n\) 个节点的树和一个常数 \(k\) ,对于树上的每一个节点 \(i\) ,求出 \( ...
- [国家集训队] Crash的文明世界
Description 给定一棵 \(n\) 个点的树,对于每个点 \(i\) 求 \(S(i)=\sum\limits_{j=1}^n \operatorname{dist(i,j)}^k\) .\ ...
- [国家集训队] Crash 的文明世界
不错的树形$ DP$的题 可为什么我自带大常数啊$ cry$ 链接:here 题意:给定一棵$ n$个节点的树,边权为$ 1$,对于每个点$ x$求$ \sum\limits_{i=1}^n dist ...
- 解题:国家集训队 Crash 的文明世界
题面 这种套着高次幂的统计问题一般都要用到第二类斯特林数和自然数幂的关系:$a^k=\sum\limits_{i=0}^{k}S_k^iC_a^i*i!$ 那么对于每个点$x$有: $ans_x=\s ...
- 【[国家集训队] Crash 的文明世界】
先写一个五十分的思路吧 首先这道题有一个弱化版 [POI2008]STA-Station 相当于\(k=1\),于是就是一个非常简单的树形\(dp\)的\(up\ \ and\ \ down\)思想 ...
随机推荐
- Git 更新操作
修改现有函数 Tom 执行克隆操作后,看到新的文件string.c,他想知道这个文件到存储库?目的是什么?于是,他执行 git 日志命令. [tom@CentOS ~]$ git clone gitu ...
- Linux 下用 valgrind 查找内存泄漏小例子
1.安装 valgrind yum install valgrind 2.测试用例 main.cpp #include <iostream> using namespace std; st ...
- EF5+MVC4系列(12) 在主视图中直接用RenderAction调用子Action,并返回视图(Return View)或者分部视图(Return PartialView); 从主Action传值到子Action使用TempData传值;TempData高级用法
结论: ViewData 适用于 在一次请求中 传递数据 . 比如我们从 主Action 到 主视图, 然后在 主视图中 用 RenderAction 请求子Action的时候,就是算作 一次请求 ...
- Springboot学习笔记(五)-条件化注入
前言 将Bean交给spring托管很简单,根据功能在类上添加@Component,@Service,@Controller等等都行,如果是第三方类,也可以通过标有@Configuration的配置类 ...
- linux 修改文件类型
:Unix及类Unix系统里,每行结尾只有换行“\n”,Windows系统里面,每行结尾是换行+回车“\n\r”. 利用Linux下的vim编辑器,可以方便的在dos文件.unix文件之间进行切换,且 ...
- titlesplit
/** * Created by lkl on 2017/6/26. *///spark-shell --driver-class-path /home/hadoop/test/mysqljdbc.j ...
- 【QT】对话框打开图像并用QPixmap显示
绘图设备是指继承QPaintDevice的子类,可以使用QPainter直接在其上面绘制图形,Qt一共提供了四个这样继承QPaintDevice的绘图设备类. 分别是QPixmap.QBitmap.Q ...
- python -u 启动python文件的作用,PYTHONUNBUFFERED环境变量的作用
python -u 启动python文件的作用是不缓存,直接把输出重定向到文件,比如nohup启动什么的,如果不使用-u启动,那么程序中的print和日志什么的,可能不会非常及时的重定向到out文件, ...
- [IR] Dictionary Coding
[数据压缩]LZ77算法原理及实现 [数据压缩]LZ78算法原理及实现 Lempel–Ziv–Welch 年发表的论文<A Universal Algorithm for Sequential ...
- 15适配器模式Adapter
一.什么是适配器模式 Adapter模式也叫适配器模式,是构造型模式之一 ,通过Adapter模式可以改变已有类(或外部类)的接 口形式. 二.适配器模式应用场景 在大规模的系统开发过程中,我们常常碰 ...