UVA 10985 - Rings'n'Ropes(floyd)
Problem D
Rings'n'Ropes
Time Limit: 3 seconds
"Well, that seems to be the situation. But, I don't want that, and you don't want that, and Ringo here definitely doesn't want that." |
Jules Winnfield
I have n tiny rings made of steel. I also have m pieces of rope, all of exactly the same length. The two ends of each piece of rope are tied to two different rings.
I am going to take one of the rings, L, into my left hand, and another ring, R into my right hand. Then I will pull the whole structure apart as hard as I can. Some of the ropes will be streched horizontally because of this. Others will hang down or bend out of shape. If I want the number of horizontally stretched ropes to be as large as possible, which L and R should I pick?
Assume that the stretching of ropes in negligible, they all have negligible thickness and are free to slide around the rings that they are tied to. The thickness and radius of each ring is negligible, too.
Input
The first line of input gives the number of cases, N. N test cases follow. Each one starts with two lines containing n (
2<=
n<=120
) and m(
0<=
m<=
n(
n-1)/2
). The next m lines will each contain a pair of different rings (integers in the range [0, n-1]). Each pair of rings will be connected by at most one rope.
Output
For each test case, output the line containing "Case #x:", followed by the largest number of ropes that I can stretch horizontally by picking a pair of rings, L and R.
Sample Input | Sample Output |
4 |
Case #1: 1 |
题意:有n个戒指,中间连着m条绳子,现在要求出选定两个戒指,拉直之后,中间有多少绳子被绷直,求出绷直绳子最多的绳子数
思路:最短路,先用floyd打出整个最短路表,然后枚举两点,把两点间满足最短路的所有点都找出来,然后还要进行一个判断,如果起点到两个点的距离是相等的话,那么这条边是无法被拉直的。
代码:
#include <stdio.h>
#include <string.h>
#define INF 0x3f3f3f3f
const int N = 155; int T, n, m, cas = 0;
int a, b;
int g[N][N], f[N][N]; void init() {
memset(g, 0, sizeof(g));
memset(f, INF, sizeof(f));
scanf("%d%d", &n, &m);
for (int i = 0; i < m; i ++) {
scanf("%d%d", &a, &b);
f[a][b] = f[b][a] = 1;
g[a][b] = g[b][a] = 1;
}
for (int i = 0; i < n; i ++)
f[i][i] = 0;
for (int k = 0; k < n; k ++)
for (int i = 0; i < n; i ++)
for (int j = 0; j < n; j ++) {
if (f[i][j] > f[i][k] + f[k][j])
f[i][j] = f[i][k] + f[k][j];
}
} void solve() {
init();
int ans = 0;
for (int u = 0; u < n; u ++)
for (int v = u + 1; v < n; v ++) {
int save[N], num = 0, count = 0;
for (int i = 0; i < n; i ++) {
if (f[u][v] == f[u][i] + f[i][v])
save[num ++] = i;
}
for (int i = 0; i < num; i ++)
for (int j = i + 1; j < num; j ++) {
if (g[save[i]][save[j]] && f[u][save[i]] != f[u][save[j]])
count ++;
}
if (count > ans)
ans = count;
}
printf("Case #%d: %d\n", ++cas, ans);
} int main() {
scanf("%d", &T);
while (T --) {
solve();
}
return 0;
}
UVA 10985 - Rings'n'Ropes(floyd)的更多相关文章
- UVA 10985 Rings'n'Ropes
最短路 参考了Staingger的博客 感觉DP的状态记录还是有毛病.可以DFS寻找结果也. #include <map> #include <set> #include &l ...
- UVa 247 - Calling Circles(Floyd求有向图的传递闭包)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA 436 - Arbitrage (II)(floyd)
UVA 436 - Arbitrage (II) 题目链接 题意:给定一些国家货币的汇率.问是否能通过不断换货币使钱得到增长 思路:floyd,完事后推断一下有没有连到自己能大于1的情况 代码: #i ...
- UVa 1001 Say Cheese【floyd】
题意:在一个三维的奶酪里面有n(n<=100)个洞,老鼠A想到达老鼠B的位置, 在洞里面可以瞬间移动,在洞外面的移动速度为10秒一个单位,求最短时间 看到n<=100,又是求最短时间,想到 ...
- uva 104 Arbitrage (DP + floyd)
uva 104 Arbitrage Description Download as PDF Background The use of computers in the finance industr ...
- UVA 247 电话圈 (floyd传递闭包 + dfs输出连通分量的点)
题意:输出所有的环: 思路:数据比较小,用三层循环的floyd传递闭包(即两条路通为1,不通为0,如果在一个环中,环中的所有点能互相连通),输出路径用dfs,递归还没有出现过的点(vis),输出并递归 ...
- Uva(10048),最短路Floyd
题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...
- UVa 821 Page Hopping【Floyd】
题意:给出一个n个点的有向图,任意两个点之间都相互到达,求任意两点间最短距离的平均值 因为n很小,所以可以用floyd 建立出图,然后用floyd,统计d[][]不为0且不为INF的边的和及条数,就可 ...
- UVA 11549 CALCULATOR CONUNDRUM(Floyd判圈算法)
CALCULATOR CONUNDRUM Alice got a hold of an old calculator that can display n digits. She was bore ...
随机推荐
- C语言基础程序设计
1 概论 程序(指令和数据的集合)在运行时,首先会被加载到内存(此时称为进程),然后由CPU通过控制器的译码从内存中读取指令,并按照指令的要求,从存储器中取出数据进行指定的运算和逻辑操作等加工,然后再 ...
- 判断IE浏览器用IE条件表达式
<!--[if IE]> <script type="text/javascript"> alert("ie") </script ...
- jquery 左侧展开栏目
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- windows下配置wnmp
最近尝试windows下配置nginx+php+mysql,在这里总结一下. 1.下载windows版本的nginx,官网下载地址:http://nginx.org/en/download.htm, ...
- 如何设置路由器实现静态IP配置
一.概述 嵌入式开发者,经常面对这样的环境:PC(windows)+虚拟机(linux)+开发板.我们希望三者都能相互通信,而且可以联网. 对于实验室只提供一根网线,而自己没有额外的增加端口数量的设备 ...
- Keras如何构造简单的CNN网络
1. 导入各种模块 基本形式为: import 模块名 from 某个文件 import 某个模块 2. 导入数据(以两类分类问题为例,即numClass = 2) 训练集数据data 可以看到,da ...
- Eclipse插件卸载
以前搞过安卓,重装系统后,安卓损坏了,每次还会提示那个窗口很烦人. 使用Eclipse自带的卸载插件功能即可,Help->About Eclipse->Inst ...
- 【Ireport】利用Ireport5.2的table组件迅速制作表格导出pdf
转载请注明网址.Ireport table dataset Ireport在半年前还是4.7,今天无意发现,居然出到了5.2就搞一把. 首先,去下载Ireport,并进行安装.这个我就不演示了.下载完 ...
- JENKINS的远程API调用,然后用PYTHON解析出最新的版本及稳定成功的版本
这个功能,我觉得在作自动作部署时,是可以派上用处的. 记录一下. import urllib f = urllib.urlopen('http://jenkinsurl/job/job_name/ap ...
- linux里的php使用phpize拓展各种功能(curl,zip,gd等等)
这里的实验以拓展zip功能为实例,成功使用zip功能需要如下步骤: 1.下载zip拓展包,并解压,并进入zip文件夹 tar -zxvf zip.tar.gz // 解压 cd zip //进入文件夹 ...