Problem D

Rings'n'Ropes


Time Limit: 3 seconds

"Well, that seems to be the situation. But,
I don't want that, and you don't want that,
and Ringo here definitely doesn't want that."

Jules Winnfield

I have n tiny rings made of steel. I also have m pieces of rope, all of exactly the same length. The two ends of each piece of rope are tied to two different rings.

I am going to take one of the rings, L, into my left hand, and another ring, R into my right hand. Then I will pull the whole structure apart as hard as I can. Some of the ropes will be streched horizontally because of this. Others will hang down or bend out of shape. If I want the number of horizontally stretched ropes to be as large as possible, which L and R should I pick?

Assume that the stretching of ropes in negligible, they all have negligible thickness and are free to slide around the rings that they are tied to. The thickness and radius of each ring is negligible, too.

Input
The first line of input gives the number of cases, NN test cases follow. Each one starts with two lines containing n (

2<=
n<=120
) and m(

0<=
m<=
n(
n-1)/2
). The next m lines will each contain a pair of different rings (integers in the range [0, n-1]). Each pair of rings will be connected by at most one rope.

Output
For each test case, output the line containing "Case #x:", followed by the largest number of ropes that I can stretch horizontally by picking a pair of rings, L and R.

Sample Input Sample Output
4
2
1
0 1
3
3
0 1
1 2
2 0
6
6
0 1
0 5
1 3
5 4
3 2
4 2
6
7
0 1
0 5
1 3
1 4
5 4
3 2
4 2
Case #1: 1
Case #2: 1
Case #3: 6
Case #4: 7

题意:有n个戒指,中间连着m条绳子,现在要求出选定两个戒指,拉直之后,中间有多少绳子被绷直,求出绷直绳子最多的绳子数

思路:最短路,先用floyd打出整个最短路表,然后枚举两点,把两点间满足最短路的所有点都找出来,然后还要进行一个判断,如果起点到两个点的距离是相等的话,那么这条边是无法被拉直的。

代码:

#include <stdio.h>
#include <string.h>
#define INF 0x3f3f3f3f
const int N = 155; int T, n, m, cas = 0;
int a, b;
int g[N][N], f[N][N]; void init() {
memset(g, 0, sizeof(g));
memset(f, INF, sizeof(f));
scanf("%d%d", &n, &m);
for (int i = 0; i < m; i ++) {
scanf("%d%d", &a, &b);
f[a][b] = f[b][a] = 1;
g[a][b] = g[b][a] = 1;
}
for (int i = 0; i < n; i ++)
f[i][i] = 0;
for (int k = 0; k < n; k ++)
for (int i = 0; i < n; i ++)
for (int j = 0; j < n; j ++) {
if (f[i][j] > f[i][k] + f[k][j])
f[i][j] = f[i][k] + f[k][j];
}
} void solve() {
init();
int ans = 0;
for (int u = 0; u < n; u ++)
for (int v = u + 1; v < n; v ++) {
int save[N], num = 0, count = 0;
for (int i = 0; i < n; i ++) {
if (f[u][v] == f[u][i] + f[i][v])
save[num ++] = i;
}
for (int i = 0; i < num; i ++)
for (int j = i + 1; j < num; j ++) {
if (g[save[i]][save[j]] && f[u][save[i]] != f[u][save[j]])
count ++;
}
if (count > ans)
ans = count;
}
printf("Case #%d: %d\n", ++cas, ans);
} int main() {
scanf("%d", &T);
while (T --) {
solve();
}
return 0;
}

UVA 10985 - Rings'n'Ropes(floyd)的更多相关文章

  1. UVA 10985 Rings'n'Ropes

    最短路 参考了Staingger的博客 感觉DP的状态记录还是有毛病.可以DFS寻找结果也. #include <map> #include <set> #include &l ...

  2. UVa 247 - Calling Circles(Floyd求有向图的传递闭包)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  3. UVA 436 - Arbitrage (II)(floyd)

    UVA 436 - Arbitrage (II) 题目链接 题意:给定一些国家货币的汇率.问是否能通过不断换货币使钱得到增长 思路:floyd,完事后推断一下有没有连到自己能大于1的情况 代码: #i ...

  4. UVa 1001 Say Cheese【floyd】

    题意:在一个三维的奶酪里面有n(n<=100)个洞,老鼠A想到达老鼠B的位置, 在洞里面可以瞬间移动,在洞外面的移动速度为10秒一个单位,求最短时间 看到n<=100,又是求最短时间,想到 ...

  5. uva 104 Arbitrage (DP + floyd)

    uva 104 Arbitrage Description Download as PDF Background The use of computers in the finance industr ...

  6. UVA 247 电话圈 (floyd传递闭包 + dfs输出连通分量的点)

    题意:输出所有的环: 思路:数据比较小,用三层循环的floyd传递闭包(即两条路通为1,不通为0,如果在一个环中,环中的所有点能互相连通),输出路径用dfs,递归还没有出现过的点(vis),输出并递归 ...

  7. Uva(10048),最短路Floyd

    题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...

  8. UVa 821 Page Hopping【Floyd】

    题意:给出一个n个点的有向图,任意两个点之间都相互到达,求任意两点间最短距离的平均值 因为n很小,所以可以用floyd 建立出图,然后用floyd,统计d[][]不为0且不为INF的边的和及条数,就可 ...

  9. UVA 11549 CALCULATOR CONUNDRUM(Floyd判圈算法)

    CALCULATOR CONUNDRUM   Alice got a hold of an old calculator that can display n digits. She was bore ...

随机推荐

  1. Java之网络请求工具类(依赖:org.apache.http;注:HttpClient 4.4,HttpCore 4.4)

    到此处可以去下载依赖包:http://hc.apache.org/downloads.cgi import java.util.List; import org.apache.http.HttpSta ...

  2. U盘安装ubuntu时出现的gfxboot.c32:not a COM32R image问题

    方法特别简单:只需在提示后面输入   live  然后回车 就OK了

  3. c#写个基础的Socket通讯

    晚上想写点东西,想想把我刚来公司学的Sockt通讯写上来吧.要写的简单易懂点,新人们可以借鉴下哦,用控制台写. 先得说说Socket,与TCP/UDP啥关系,一直讲什么Socket通讯,TCP通讯,都 ...

  4. 关于js效果不提示就执行了刷新(解决 在h-ui框架中)

    parent.layer.msg('保存成功!<script>setTimeout("window.location.reload();",1100);<\/sc ...

  5. php生成图片验证码

    验证码主要用来防止暴力破解的方式来进行登录,下面是php中的图片验证码生成方式,废话不多说,直接上代码 /** * 生成验证码 */ function buildRandomString($type= ...

  6. oracle技巧-持续更新

    1. 登录oracle数据库,执行select status from v$encryption_wallet,如果返回OPEN,表示钱夹已自动打开. 2.

  7. BZOJ 4008 亚瑟王

    Description 小K不慎被LL邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个看脸的游 ...

  8. BZOJ 1026 windy数

    Description windy定义了一种windy数.不含前导零且相邻两个数字之差至少为2的正整数被称为windy数. windy想知道,在A和B之间,包括A和B,总共有多少个windy数? In ...

  9. Jetty实战之 安装 运行 部署

    本文地址:http://blog.csdn.net/kongxx/article/details/7218767 1. 首先从Jetty的官方网站http://wiki.eclipse.org/Jet ...

  10. 测试WWW方案(反向代理,负载均衡,HTTP加速缓存)

    大约图如下: NGINX FRONT(80)--->VARNISH(8080)---->LNMP BACKEND 1(80) |--->LNMP BACKEND 2(80) 主要是前 ...