《Linear Algebra and Its Applications》-chaper3-行列式-从一个逆矩阵算法证明引入的行列式
这一章节开始介绍线性代数中另外一个基本概念——行列式。
其实与矩阵类似,行列式也是作为简化表述多项式的一种工具,关于行列式的历史渊源,有如下的介绍。
在介绍逆矩阵的时候,我们曾提及二阶矩阵有一个基于矩阵A对应行列式|A|和伴随矩阵的计算方法,当时由于没有引入行列式就暂且搁置,今天在这里将给出详细的证明过程。
关于行列式、伴随矩阵以及余子式、代数余子式等基本概念,这里不做累述。
另外由于MathType编辑器的符号所限,这里将证明过程手写在黑板上然后拍下图片.
值得注意的是,这种基于矩阵对应行列式和伴随阵的求逆矩阵的算法,是对所有n阶矩阵都适合的,但是对于3阶以上的矩阵,我们得到伴随矩阵过程中计算量太大因此不宜使用,而对于2阶矩阵是最适合。
《Linear Algebra and Its Applications》-chaper3-行列式-从一个逆矩阵算法证明引入的行列式的更多相关文章
- 《Linear Algebra and Its Applications》-chaper3-行列式-行列式初等变换
承接上一篇文章对行列式的引入,这篇文章将进一步记录关于行列式的有关内容,包括如下的几个方面: (1)行列式3个初等变换的证明. (2)转置行列式与原行列式相等的证明. (3)定理det(AB) = d ...
- 《Linear Algebra and Its Applications》-chaper2-矩阵的逆
矩阵的逆: 逆矩阵的定义: 类比于我们在研究实数的时候回去讨论一个数的倒数,对应的,在矩阵运算中,当AB = I的时候,A,B互称为逆矩阵,这里的I类似实数中的1,表示单位矩阵,即对角线是1其余位置是 ...
- 《Linear Algebra and Its Applications》-chaper1-线性方程组- 线性变换
两个定理非常的简单显然,似乎是在证明矩阵代数中的基本运算律.但是它为后面用“线性变换”理解矩阵-向量积Ax奠定了理论基础. 结合之前我们讨论过的矩阵和向量的积Ax的性质,下面我们就可以引入线性变换了. ...
- 《Linear Algebra and Its Applications》-chaper4-向量空间-子空间、零空间、列空间
在线性代数中一个非常重要的概念就是向量空间R^n,这一章节将主要讨论向量空间的一系列性质. 一个向量空间是一些向量元素构成的非空集合V,需要满足如下公理: 向量空间V的子空间H需要满足如下三个条件: ...
- 《Linear Algebra and Its Applications》-chaper6-正交性和最小二乘法-最小二乘问题
最小二乘问题: 结合之前给出向量空间中的正交.子空间W.正交投影.正交分解定理.最佳逼近原理,这里就可以比较圆满的解决最小二乘问题了. 首先我们得说明一下问题本身,就是在生产实践过程中,对于巨型线性方 ...
- 《Linear Algebra and Its Applications》-chaper6-正交性和最小二乘法- 格拉姆-施密特方法
构造R^n子空间W一组正交基的算法:格拉姆-施密特方法.
- 《Linear Algebra and Its Applications》-chaper6-正交性和最小二乘法-基本概念与定理
这一章节我们主要讨论定义在R^n空间上的向量之间的关系,而这个关系概括来讲其实就是正交,然后引入正交投影.最佳逼近定理等,这些概念将为我们在求无解的线性方程组Ax=b的最优近似解打下基石. 正交性: ...
- 《Linear Algebra and Its Applications》-chaper5-特征值与特征向量-基本概念
基于之前章节的铺垫,我们这里能够很容易的引出特征向量和特征值的概念. 首先我们知道n x n矩阵的A和n维向量v的乘积会得到一个n维的向量,那么现在我们发现,经过计算u=Av,得到的向量u是和v共线的 ...
- 《Linear Algebra and Its Applications》-chaper3-行列式-克拉默法则
计算线性方程组唯一解的克拉默法则:
随机推荐
- java异常类的使用
1.异常的概念 什么是异常?程序出错分为两部分,编译时出粗和运行时出错.编译时出错是编译器在编译源码时发生的错误: 运行时出错是在编译通过,在运行时出现的错误.这种情况叫异常. 例如:数组越界,除数为 ...
- sql -以零作除数
将表达式改为: case when b=0 then 0 else a/b end
- 【转】 ios开发之倒计时实现的两种方法
原文:http://blog.csdn.net/kylinbl/article/details/8972261 方法1:使用NSTimer来实现 主要使用的是NSTimer的scheduledTime ...
- 绘图quartz之加水印
实现在图片上加一个水印 并存在document的路径下 同时在手机相册中也存一份 //首先开启imageContext找到图片 UIGraphicsBeginImageContext( ...
- Ubuntu 12.04下解决Rhythmbox Music Player乱码问题
1.打开终端输入如下信息: $ sudo gedit ~/.profile 2.在打开的文档末尾加上如下两句: export GST_ID3_TAG_ENCODING=GBK:UTF-8:GB1803 ...
- 15_RHEL7挂载NTFS分区
1.下载ntfs-3g wget https://tuxera.com/opensource/ntfs-3g_ntfsprogs-2015.3.14.tgz 2.安装 tar -zxvf ntfs-3 ...
- call/apply的第一个参数如果为null。this指向window
call/apply是用来改变函数的作用域的,第一次参数为this,第二个参数为传输的值,例如 var a ="windowA"; var b = "windowB&qu ...
- jQuery-弹窗登录
在jQuery中实现弹窗常要用到的方法有: width() :元素的宽度 outerWidth() 元素的宽度 盒子的padding+border 总的宽度 scrollTop() 鼠标滚轮自上 ...
- 与 空格的区别
nbsp 是 Non-Breaking SPace的缩写,即“不被折断的空格”,当两个单词使用 连接时,这两个单词就不会被分隔为2行,如下面 <div id="div1" ...
- 五分钟看懂js关键字this
this是js里面很常用的关键字,而灵活的js也赋予了这个关键字无穷的生命力,相信你也有被它糊弄的时候,我总结了一个6字原则,大部分场合都能清醒分辨this到底指向who,跟大家分享一下,欢迎指正. ...