Caffe 编译
Compilation
Now that you have the prerequisites, edit your Makefile.config to change the paths for your setup The defaults should work, but uncomment the relevant lines if using Anaconda Python.
cp Makefile.config.example Makefile.config
# Adjust Makefile.config (for example, if using Anaconda Python)
make all
make test
make runtest
- For cuDNN acceleration, you should uncomment the
USE_CUDNN := 1switch inMakefile.config. - For CPU-only Caffe, uncomment
CPU_ONLY := 1inMakefile.config.
To compile the Python and MATLAB wrappers do make pycaffe and make matcaffe respectively. Be sure to set your MATLAB and Python paths in Makefile.config first!
Distribution: run make distribute to create a distribute directory with all the Caffe headers, compiled libraries, binaries, etc. needed for distribution to other machines.
Speed: for a faster build, compile in parallel by doing make all -j8 where 8 is the number of parallel threads for compilation (a good choice for the number of threads is the number of cores in your machine).
Now that you have installed Caffe, check out the MNIST tutorial and the reference ImageNet model tutorial.
CMake Compilation
In lieu of manually editing Makefile.config to configure the build, Caffe offers an unofficial CMake build thanks to @Nerei, @akosiorek, and other members of the community. It requires CMake version >= 2.8.7. The basic steps are as follows:
mkdir build
cd build
cmake ..
make all
make runtest
See PR #1667 for options and details.
Hardware
Laboratory Tested Hardware: Berkeley Vision runs Caffe with K40s, K20s, and Titans including models at ImageNet/ILSVRC scale. We also run on GTX series cards (980s and 770s) and GPU-equipped MacBook Pros. We have not encountered any trouble in-house with devices with CUDA capability >= 3.0. All reported hardware issues thus-far have been due to GPU configuration, overheating, and the like.
CUDA compute capability: devices with compute capability <= 2.0 may have to reduce CUDA thread numbers and batch sizes due to hardware constraints. Your mileage may vary.
Once installed, check your times against our reference performance numbers to make sure everything is configured properly.
Ask hardware questions on the caffe-users group.
Caffe 编译的更多相关文章
- ubuntu16.04, Matlab2016b caffe编译安装
在Ubuntu上编译安装caffe还是个比较蛋疼的事,有时候会莫名其妙的碰到很多库的问题,这篇文章就把我在Ubuntu上编译安装caffe的过程和遇到的问题大致记录一下. 1.安装opencv htt ...
- caffe编译问题-src/caffe/net.cpp:8:18: fatal error: hdf5.h: No such file or directory compilation terminated.
错误描述 src/caffe/net.:: fatal error: hdf5.h: No such : recipe 操作过程 step1: 在Makefile.config文件更改INCLUDE_ ...
- 转 Windows+VS2013爆详细Caffe编译安装教程
1. 安装cuda Cuda是英伟达推出的GPU加速运算平台 我这里安装的是cuda7.5,已经安装过的忽略,还没有安装过的这里有安装教程.windows下面安装还是非常简单的. 点击打开链接 ...
- caffe编译时候出现 undefined reference to `TIFFReadRGBAStrip@LIBTIFF_4.0'
1.编译时候出现 make: * [.build_release/examples/siamese/convert_mnist_siamese_data.bin] Error 1 /usr/local ...
- caffe编译报错解决
添加ssd中的一些层之后,编译报错: ../lib/libcaffe.so.1.0.0-rc5:对‘boost::match_results<__gnu_cxx::__normal_iterat ...
- caffe编译环境的错误:..build_release/src/caffe/proto/caffe.pb.h:23:35: fatal error: google/protobuf/arena.h: 没有那个文件
在搭建caffe的环境时出现错误: .build_release/src/caffe/proto/caffe.pb.h:23:35: fatal error: google/protobuf/aren ...
- 深度学习-Caffe编译测试的小总结
1. 搭建的环境和代码:win7 64bit + vs2013+CUDA7.5 http://blog.csdn.net/thesby/article/details/50880802 2. 编译,制 ...
- 深度学习-Windows平台下的Caffe编译教程
一.安装CUDA7.5 Cuda是英伟达推出的GPU加速运算平台 我这里安装的是cuda7.5,已经安装过的忽略,还没有安装过的这里有安装教程.windows下面安装还是非常简单的. https:// ...
- 【泡咖啡1】linux下caffe编译以及python环境配置手记
caffe是一个深度学习的库,相信搞深度学习的话,不是用这个库就是用theano吧.要想使用caffe首先第一步就是要配置好caffe的环境.在这里,我主要说的是在debian的linux环境下如何配 ...
- Caffe 编译: undefined reference to imencode()
本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/52150781 整理之前编译工程中遇到的 ...
随机推荐
- ubuntu基本使用
sudo nautilus xxx指定目录去打开 这个命令就是以root权限打开一个窗口,来管理文件
- 列表显示数据 但是数据的字体颜色要js添加
1.需求:数据在前台显示,但是每个条记录的颜色要有点不同 1.java后台数据的处理 String ids=""; for(int x=0;x<sign.size();x++ ...
- js异步脚本
1.延迟脚本 HTML4.01为<script>标签定义了defer属性,为了表明脚本在执行时不会影响页面的构造.也就是说,脚本会在整个页面都解析完毕后再运行.因此在<script& ...
- mysql中char与varchar的区别
在建立数据库表结构的时候,为了给一个String类型的数据定义一个数据库的数据库类型,一般参考的都是char或者varchar,这两种选择有时候让人很纠结,今天想总结一下它们两者的区别,明确一下选择塔 ...
- Flink 另外一个分布式流式和批量数据处理的开源平台
Apache Flink是一个分布式流式和批量数据处理的开源平台. Flink的核心是一个流式数据流动引擎,它为数据流上面的分布式计算提供数据分发.通讯.容错.Flink包括几个使用 Flink引擎创 ...
- ubuntu导出文件
ye@aliyun:python$ ./deploy.sh backup static-rw-r--r-- 1 ye ye 174K 2014-03-22 10:36 ./backup/fbz_sta ...
- MOSFET管应用总结
/* *本文转载自互联网,仅供个人学习之用,请勿用于商业用途. */ 在使用MOS管设计开关电源或者马达驱动电路的时候,大部分人都会考虑MOS的导通电阻,最大电压等,最大电流等,也有很多人仅仅考虑这些 ...
- [转]如何根据cpu的processor数来确定程序的并发线程数量
原文:http://blog.csdn.net/kirayuan/article/details/6321967 我们可以在cat 里面发现processor数量,这里的processor可以理解为逻 ...
- Java 8 的 JVM 有多快?Fork-Join 性能基准测试
Java 8 已经发布一段时间了,许多开发者已经开始使用 Java 8.本文也将讨论最新发布在 JDK 中的并发功能更新.事实上,JDK 中已经有多处java.util.concurrent 改动,但 ...
- SPRING IN ACTION 第4版笔记-第二章WIRING BEANS-008-在XML配置文件中引入JAVA配置文件 <import> 、<bean>
一.在xml中引入xml,用<import> <?xml version="1.0" encoding="UTF-8"?> <be ...