//从今天起准备认真看完这本书。本渣虽然笨,但是窝懒啊。。。。

//今天开始看第一章。希望坚持下去。

第一章 引言

通过讨论连通问题的几种算法,来引出算法的重要性。

1.1 连通问题的快速查找算法

感觉就是把每个点染色,每个颜色代表一堆,互相连通。每次输入两个点,把两个点所属那个颜色改为相同,这样他们代表就都互相连通。

时间复杂度:O(MN), M是输入指令次数,N是点个数

//1.1 连通问题的快速查找算法
#include <stdio.h> #define N 10 int id[N]; // 表示每个点的色 int main()
{
//freopen("in.txt", "r", stdin);
int i, t, p, q; for (i = 0; i < N; ++i)
id[i] = i; // 开始每两个点都不连通,所以每个点一个颜色
while (scanf("%d%d", &p, &q) == 2) {
if (id[p] != id[q]) {
for (t = id[p], i = 0; i < N; ++i)
if (id[i] == t) // 把所有和p一个颜色的点染成q的颜色
id[i] = id[q];
}
for (i = 0; i < N; ++i)
printf("%d ", id[i]);
printf("\n");
}
return 0;
}

1.2 连通问题的快速合并解法

就是两个点相同就把两个点放到同一棵树上,这样两个点根相同代表他们连通。每次找到两个点的根,如果不相同,就把一个跟连到另一个根上。

时间复杂度:O(MN),M是输入指令次数,N是点个数。当M>N时,执行次数为MN/2

//1.2 连通问题的快速合并算法

#include <stdio.h>

#define N 10

int main()
{
//freopen("in.txt", "r", stdin);
int i, j, p, q;
int id[N]; // 表示每个点的父节点
for (i = 0; i < N; ++i)
id[i] = i; // 开始每两个点都不连通,所以每个点的父节点是自己
while (scanf("%d%d", &p, &q) == 2) {
for (i = p; i != id[i]; i = id[i])
/*nothing*/ ; // 当该节点的父节点与该节点相等时,证明该节点是根
for (j = q; j != id[j]; j = id[j])
/*nothing*/ ;
if (i != j) //此时i为p的根,j为q的根
id[i] = j;
for (i = 0; i < N; ++i)
printf("%d ", id[i]);
printf("\n");
}
return 0;
}

1.3 加权快速合并算法

记录每棵树的节点个数,把节点少的根连到节点多的根。

时间复杂度:lgN。每次找一个节点的根只需要lgN,因为1+lgi=lg2+lgi=lg(2i)=lg(i+i)<=lg(i+j)

//1.3 加权快速合并算法
#include <stdio.h> #define N 10 int main()
{
freopen("in.txt", "r", stdin);
int i, j, p, q;
int id[N]; // 表示每个点的父节点
int sz[N]; // 每棵树的节点个数
for (i = 0; i < N; ++i) {
id[i] = i; // 开始每两个点都不连通,所以每个点的父节点是自己
sz[i] = 1; // 开始每个节点一棵树
}
while (scanf("%d%d", &p, &q) == 2) {
for (i = p; i != id[i]; i = id[i])
/*nothing*/ ; // 当该节点的父节点与该节点相等时,证明该节点是根
for (j = q; j != id[j]; j = id[j])
/*nothing*/ ; //此时i为p的根,j为q的根
if (i != j && sz[i] < sz[j]) {
//当j所在树节点多,就把i连j上
id[i] = j;
sz[j] += sz[i];
} else if (i != j) {
id[j] = i;
sz[i] += sz[j];
}
for (i = 0; i < N; ++i)
printf("%d ", id[i]);
printf("\n"); }
return 0;
}

1.4 等分路径压缩

在查找根的过程中,使沿路每个节点的id指向根。 

时间复杂度:接近O(n)?

//1.4 等分路径压缩
#include <stdio.h> #define N 10
int main()
{
//freopen("in.txt", "r", stdin);
int i, j, p, q;
int id[N]; // 表示每个点的父节点
int sz[N]; // 每棵树的节点个数
for (i = 0; i < N; ++i) {
id[i] = i; // 开始每两个点都不连通,所以每个点的父节点是自己
sz[i] = 1; // 开始每个节点一棵树
}
while (scanf("%d%d", &p, &q) == 2) {
for (i = p; i != id[i]; i = id[i]) {
//printf("id[%d]=%d, id[id[%d]]=%d\n", i, id[i], i, id[id[i]]);
id[i] = id[id[i]]; // --------①--------
}
for (j = q; j != id[j]; j = id[j])
id[j] = id[id[j]];
if (i != j && sz[i] < sz[j]) {
id[i] = j;
sz[j] += sz[i];
} else if (i != j) {
id[j] = i;
sz[i] += sz[j];
}
for (i = 0; i < N; ++i)
printf("%d ", id[i]);
printf("\n"); }
return 0;
}

说一下窝对①处的理解。

如果该节点为根节点或深度为2,即

则不改变。

如果深度为3,则

->

深度为4

->

深度为5

深度为6

这样每个节点的深度小了。搜索根节点的复杂度变小。(然而我觉得并没有什么卵用。。。。)

《算法:C语言实现》阅读笔记的更多相关文章

  1. 阅读《RobHess的SIFT源码分析:综述》笔记

    今天总算是机缘巧合的找到了照样一篇纲要性质的文章. 如是能早一些找到就好了.不过“在你认为为时已晚的时候,其实还为时未晚”倒是也能聊以自慰,不过不能经常这样迷惑自己,毕竟我需要开始跑了! 就照着这个大 ...

  2. RobHess的SIFT源码分析:imgfeatures.h和imgfeatures.c文件

    SIFT源码分析系列文章的索引在这里:RobHess的SIFT源码分析:综述 imgfeatures.h中有SIFT特征点结构struct feature的定义,除此之外还有一些特征点的导入导出以及特 ...

  3. RobHess的SIFT源码分析:综述

    最初的目的是想做全景图像拼接,一开始找了OpenCV中自带的全景拼接的样例,用的是Stitcher类,可以很方便的实现全景拼接,而且效果很好,但是不利于做深入研究. 使用OpenCV中自带的Stitc ...

  4. 阅读《RobHess的SIFT源码分析:综述》笔记2

    今天开始磕代码部分. part1: 1. sift特征提取. img1_Feat = cvCloneImage(img1);//复制图1,深拷贝,用来画特征点 img2_Feat = cvCloneI ...

  5. element-ui button组件 radio组件源码分析整理笔记(一)

    Button组件 button.vue <template> <button class="el-button" @click="handleClick ...

  6. element-ui 组件源码分析整理笔记目录

    element-ui button组件 radio组件源码分析整理笔记(一) element-ui switch组件源码分析整理笔记(二) element-ui inputNumber.Card .B ...

  7. element-ui Carousel 走马灯源码分析整理笔记(十一)

    Carousel 走马灯源码分析整理笔记,这篇写的不详细,后面有空补充 main.vue <template> <!--走马灯的最外层包裹div--> <div clas ...

  8. STL源码分析读书笔记--第二章--空间配置器(allocator)

    声明:侯捷先生的STL源码剖析第二章个人感觉讲得蛮乱的,而且跟第三章有关,建议看完第三章再看第二章,网上有人上传了一篇读书笔记,觉得这个读书笔记的内容和编排还不错,我的这篇总结基本就延续了该读书笔记的 ...

  9. element-ui MessageBox组件源码分析整理笔记(十二)

    MessageBox组件源码,有添加部分注释 main.vue <template> <transition name="msgbox-fade"> < ...

  10. element-ui switch组件源码分析整理笔记(二)

    源码如下: <template> <div class="el-switch" :class="{ 'is-disabled': switchDisab ...

随机推荐

  1. vim file save as

    the command of vim to save as the file :w new_file_name

  2. FontDialog组件设置字体

    1.设置字体 private void button3_Click(object sender, EventArgs e) { this.fontDialog1.ShowDialog(); this. ...

  3. 【面试题】百度糯米java工程师面试

    面试经历: 技术题问的比较基础的java知识,有个编程题设计团购秒杀方面的设计,之前没有这种经验做的不好,做完题一个技术经理过来面试,主要问了一下之前做的什么项目,对struts,spring的原理做 ...

  4. ?Swift获取手机设备信息

    使用UiDevice获取设备信息: 获取设备名称 let name = UIDevice.currentDevice().name 获取设备系统名称 let systemName = UIDevice ...

  5. pywinauto如何获取gridwindow控件的屏幕位置

    一:问题描述 问题一:通过查找pywinauto在线文档,其中没有讲解到gridwindow控件的方法,我不知道这个控件是不是标准控件,还是pywinauto根本就没适配这个控件.从网上查询了好多资料 ...

  6. secondarynamenode异常

    secondarynamenode异常 -- ::, ERROR org.apache.hadoop.hdfs.server.namenode.SecondaryNameNode: Exception ...

  7. Maven仓库详解

    转载自:Maven入门指南④:仓库   1 . 仓库简介 没有 Maven 时,项目用到的 .jar 文件通常需要拷贝到 /lib 目录,项目多了,拷贝的文件副本就多了,占用磁盘空间,且难于管理.Ma ...

  8. Oracle----Key Word

    desc|describe table_name DCL----column ----add -- add one column alter table product ); -- add multi ...

  9. No Pain No Game

    hdu4630:http://acm.hdu.edu.cn/showproblem.php?pid=4630 题意:给定一个排序,求区间最大GCD. 题解:离散树状数组.首先把查询按左端点从大到小排序 ...

  10. easyui源码翻译1.32--Menu(菜单)

    前言 使用$.fn.menu.defaults重写默认值对象.下载该插件翻译源码 菜单组件通常用于快捷菜单.他是构建其他菜单组件的必备基础组件.比如:menubutton和splitbutton.它还 ...