关联规则算法Apriori的学习与实现
首先我们来看,什么是规则?规则形如”如果…那么…(If…Then…)”,前者为条件,后者为结果。关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。例如购物篮分析。牛奶 ⇒ 面包
[支持度:3%,置信度:40%]
假设有如下表的购买记录。
顾客 |
项目 |
1 |
orange juice, coke |
2 |
milk, orange juice, window cleaner |
3 |
orange juice, detergent |
4 |
orange juice, detergent, coke |
5 |
window cleaner |
将上表整理一下,得到如下的一个2维表
|
Orange |
Win Cl |
Milk |
Coke |
Detergent |
Orange |
4 |
1 |
1 |
2 |
2 |
WinCl |
1 |
2 |
1 |
0 |
0 |
Milk |
1 |
1 |
1 |
0 |
0 |
Coke |
2 |
0 |
0 |
2 |
1 |
Detergent |
1 |
0 |
0 |
0 |
2 |
上表中横栏和纵栏的数字表示同时购买这两种商品的交易条数。如购买有Orange的交易数为4,而同时购买Orange和Coke的交易数为2。
置信度表示了这条规则有多大程度上值得可信。设条件的项的集合为A,结果的集合为B。置信度计算在A中,同时也含有B的概率。即Confidence(A==>B)=P(B|A)。例如计算"如果Orange则Coke"的置信度。由于在含有Orange的4条交易中,仅有2条交易含有Coke.其置信度为0.5。
支持度计算在所有的交易集中,既有A又有B的概率。例如在5条记录中,既有Orange又有Coke的记录有2条。则此条规则的支持度为2/5=0.4。现在这条规则可表述为,如果一个顾客购买了Orange,则有50%的可能购买Coke。而这样的情况(即买了Orange会再买Coke)会有40%的可能发生。
再来考虑下述情况。
项 |
支持度 |
A |
0.45 |
B |
0.42 |
C |
0.4 |
A and B |
0.25 |
A and C |
0.2 |
B and C |
0.15 |
A,B,and |
0.05 |
可得到下述规则
规则 |
置信度 |
If B and C then A |
0.05/0.15*100%=33.33% |
If A and C then B |
0.05/0.20*100%=25% |
If A and B then C |
0.05/0.25*100%=20% |
上述的三条规则,哪一条规则有用呢?
对于规则" If B and C then A",同时购买B和C的人中,有33.33%会购买A。而单项A的支持度有0.45,也就是说在所有交易中,会有45%的人购买A.看来使用这条规则来进行推荐,还不如不推荐,随机对顾客进荐好了。
为此引入另外一个量,即提升度(Lift),以度量此规则是否可用。描述的是相对于不用规则,使用规则可以提高多少。有用的规则的提升度大于1。计算方式为Lift(A==>B)=Confidence(A==>B)/Support(B)=Support(A==>B)/(Support(A)*Support(B))。在上例中,Lift(If B and C The A)=0.05/(0.15*0.45)=0.74。而Lift(If A then B)=0.25/(0.45*0.42)=1.32。也就是说对买了A的人进行推荐B,购买概率是随机推荐B的1.32倍。
如何产生规则呢。可以分两步走。
首先找出频繁集(frequent itemset)。所谓频繁集指满足最小支持度或置信度的集合。其次从频繁集中找出强规则(strong rules)。强规则指既满足最小支持度又满足最小置信度的规则。
我们来看如何产生频繁集。
这其中有一个定理。即频繁集的子集也一定是频繁集。比如,如果{A,B,C}是一个3项的频繁集,则其子集{A,B},{B,C},{A,C}也一定是2项的频繁集。为方便,可以把含有k项的集合称之为k-itemsets.
下面以迭代的方式找出频繁集。首先找出1-itemsets的频繁集,然后使用这个1-itemsets,进行组合,找出2-itemsets的频繁集。如此下去,直到不再满足最小支持度或置信度的条件为止。这其中重要的两步骤分别是连接(join)和剪枝(prune).即从(k-1)-itemsets中的项进行组合,产生备选集(Candidate itemsets)。再从备选集中,将不符合最小支持度或置信度的项删去。例如
Frequent 2-itemsets |
Candidate 3-itemsets |
Frqquent 3-itemsets |
||
I1,I2 |
==> |
I1,I2,I4 |
==> |
I1,I2,I4 |
I1,I4 |
I2,I3,I4 |
|||
I2,I3 |
||||
I2,I4 |
下面我们再来看一个详细的例子。
设最小支持度为2,以Ck表示k-itemsets备选集,以Lk表示k-itemsets频繁集。
ID |
Items |
Itemset |
Sup. count |
Itemset |
Itemset |
|||
100 |
I1,I2,I5 |
I1 |
6 |
I1 |
I1,I2 |
|||
200 |
I2,I4 |
==>C1: |
I2 |
7 |
==>L1: |
I2 |
==>C2 |
I1,I3 |
300 |
I2,I3 |
I3 |
6 |
I3 |
I1,I4 |
|||
400 |
I1,I2,I4 |
I4 |
2 |
I4 |
I1,I5 |
|||
500 |
I1,I3 |
I5 |
2 |
I5 |
I2,I3 |
|||
600 |
I2,I3 |
I2,I4 |
||||||
700 |
I1,I3 |
I2,I5 |
||||||
800 |
I1,I2,I3,I5 |
I3,I4 |
||||||
900 |
I1,I2,I3 |
I3,I5 |
||||||
I4,I5 |
对C2进行扫描,计算支持度。
Itemset |
Sup. count |
Itemset |
Itemset |
Sup. count |
Itemset |
|||
I1,I2 |
4 |
==> L2: |
I1,I2 |
==> C3 |
I1,I2,I3 |
2 |
==> L3: |
I1,I2,I3 |
I1,I3 |
4 |
I1,I3 |
I1,I2,I5 |
2 |
I1,I2,I5 |
|||
I1,I4 |
1 |
I1,I5 |
||||||
I1,I5 |
2 |
I2,I3 |
||||||
I2,I3 |
4 |
I2,I4 |
||||||
I2,I4 |
2 |
I2,I5 |
||||||
I2,I5 |
2 |
|||||||
I3,I4 |
0 |
|||||||
I3,I5 |
1 |
|||||||
I4,I5 |
0 |
对于频繁集中的每一项k-itemset,可以产生非空子集,对每一个子集,可以得到满足最小置信度的规则了。例如考虑{I1,I2,I5}。其子集有{I1,I2}, {I1,I5}, {I2,I5}, {I1}, {I2}, {I5}。可以产生规则,{I1,I2} => {I5} (50%), {I1,I5} =>{I2}
(100%), {I2,I5} =>{I1} (100%),{I1} => {I2,I5} (33%), {I2} =>{I1,I5}
(29%), {I5} =>{I1,I2} (100%)。
也不是每个数据集都有产生强规则。例如"Thinkpad notebook" 和"Canon printer"一起可能很难产生有效规则。因为恰好一起买这两个牌子的产品的顾客太少。但不妨将Thinkpad notebook放到Notebook这一层次上考虑,而Canon printer放到printer这一去层次上考虑。这样的话,一起买notebook和printer的顾客就较多了。也即Multilevel association rules。
性质的重要性质用于压缩搜索空间。
图1所示为Apriori算法挖掘频繁集的过程,其中最小支持度为20%。
另外,有一个辅助类ProperSubsetCombination用于计算一个频繁项集的真子集,采用组合原理,基于数值编码原理实现的组合求解集合的真子集。
算法实现
(一)核心类
Apriori算法的核心实现类为AprioriAlgorithm,实现的Java代码如下所示:
package org.shirdrn.datamining.association;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
import java.util.TreeMap;
public class AprioriAlgorithm {
private Map<Integer, Set<String>> txDatabase; // 事务数据库
private Float minSup; // 最小支持度
private Float minConf; // 最小置信度
private Integer txDatabaseCount; // 事务数据库中的事务数
private Map<Integer, Set<Set<String>>> freqItemSet; // 频繁项集集合
private Map<Set<String>, Set<Set<String>>> assiciationRules; // 频繁关联规则集合
public AprioriAlgorithm(Map<Integer, Set<String>> txDatabase,Float minSup,Float minConf) {
this.txDatabase = txDatabase;
this.minSup = minSup;
this.minConf = minConf;
this.txDatabaseCount = this.txDatabase.size();
freqItemSet = new TreeMap<Integer, Set<Set<String>>>();
assiciationRules = new HashMap<Set<String>, Set<Set<String>>>();
}
public Map<Set<String>, Float> getFreq1ItemSet() {
Map<Set<String>, Float> freq1ItemSetMap = new HashMap<Set<String>, Float>();
Map<Set<String>, Integer> candFreq1ItemSet = this.getCandFreq1ItemSet();
Iterator<Map.Entry<Set<String>, Integer>> it = candFreq1ItemSet.entrySet().iterator();
while(it.hasNext()) {
Map.Entry<Set<String>, Integer> entry = it.next();
// 计算支持度
Float supported = new Float(entry.getValue().toString())/new Float(txDatabaseCount);
if(supported>=minSup) {
freq1ItemSetMap.put(entry.getKey(), supported);
}
}
return freq1ItemSetMap;
}
public Map<Set<String>, Integer> getCandFreq1ItemSet() {
Map<Set<String>, Integer> candFreq1ItemSetMap = new HashMap<Set<String>, Integer>();
Iterator<Map.Entry<Integer, Set<String>>> it = txDatabase.entrySet().iterator();
// 统计支持数,生成候选频繁1-项集
while(it.hasNext()) {
Map.Entry<Integer, Set<String>> entry = it.next();
Set<String> itemSet = entry.getValue();
for(String item : itemSet) {
Set<String> key = new HashSet<String>();
key.add(item.trim());
if(!candFreq1ItemSetMap.containsKey(key)) {
Integer value = 1;
candFreq1ItemSetMap.put(key, value);
}
else {
Integer value = 1+candFreq1ItemSetMap.get(key);
candFreq1ItemSetMap.put(key, value);
}
}
}
return candFreq1ItemSetMap;
}
public Set<Set<String>> aprioriGen(int m, Set<Set<String>> freqMItemSet) {
Set<Set<String>> candFreqKItemSet = new HashSet<Set<String>>();
Iterator<Set<String>> it = freqMItemSet.iterator();
Set<String> originalItemSet = null;
while(it.hasNext()) {
originalItemSet = it.next();
Iterator<Set<String>> itr = this.getIterator(originalItemSet, freqMItemSet);
while(itr.hasNext()) {
Set<String> identicalSet = new HashSet<String>(); // 两个项集相同元素的集合(集合的交运算)
identicalSet.addAll(originalItemSet);
Set<String> set = itr.next();
identicalSet.retainAll(set); // identicalSet中剩下的元素是identicalSet与set集合中公有的元素
if(identicalSet.size() == m-1) { // (k-1)-项集中k-2个相同
Set<String> differentSet = new HashSet<String>(); // 两个项集不同元素的集合(集合的差运算)
differentSet.addAll(originalItemSet);
differentSet.removeAll(set); // 因为有k-2个相同,则differentSet中一定剩下一个元素,即differentSet大小为1
differentSet.addAll(set); // 构造候选k-项集的一个元素(set大小为k-1,differentSet大小为k)
candFreqKItemSet.add(differentSet); // 加入候选k-项集集合
}
}
}
return candFreqKItemSet;
}
private Iterator<Set<String>> getIterator(Set<String> itemSet, Set<Set<String>> freqKItemSet) {
Iterator<Set<String>> it = freqKItemSet.iterator();
while(it.hasNext()) {
if(itemSet.equals(it.next())) {
break;
}
}
return it;
}
public Map<Set<String>, Float> getFreqKItemSet(int k, Set<Set<String>> freqMItemSet) {
Map<Set<String>, Integer> candFreqKItemSetMap = new HashMap<Set<String>, Integer>();
// 调用aprioriGen方法,得到候选频繁k-项集
Set<Set<String>> candFreqKItemSet = this.aprioriGen(k-1, freqMItemSet);
// 扫描事务数据库
Iterator<Map.Entry<Integer, Set<String>>> it = txDatabase.entrySet().iterator();
// 统计支持数
while(it.hasNext()) {
Map.Entry<Integer, Set<String>> entry = it.next();
Iterator<Set<String>> kit = candFreqKItemSet.iterator();
while(kit.hasNext()) {
Set<String> kSet = kit.next();
Set<String> set = new HashSet<String>();
set.addAll(kSet);
set.removeAll(entry.getValue()); // 候选频繁k-项集与事务数据库中元素做差元算
if(set.isEmpty()) { // 如果拷贝set为空,支持数加1
if(candFreqKItemSetMap.get(kSet) == null) {
Integer value = 1;
candFreqKItemSetMap.put(kSet, value);
}
else {
Integer value = 1+candFreqKItemSetMap.get(kSet);
candFreqKItemSetMap.put(kSet, value);
}
}
}
}
// 计算支持度,生成频繁k-项集,并返回
return support(candFreqKItemSetMap);
}
public Map<Set<String>, Float> support(Map<Set<String>, Integer> candFreqKItemSetMap) {
Map<Set<String>, Float> freqKItemSetMap = new HashMap<Set<String>, Float>();
Iterator<Map.Entry<Set<String>, Integer>> it = candFreqKItemSetMap.entrySet().iterator();
while(it.hasNext()) {
Map.Entry<Set<String>, Integer> entry = it.next();
// 计算支持度
Float supportRate = new Float(entry.getValue().toString())/new Float(txDatabaseCount);
if(supportRate<minSup) { // 如果不满足最小支持度,删除
it.remove();
}
else {
freqKItemSetMap.put(entry.getKey(), supportRate);
}
}
return freqKItemSetMap;
}
public void mineFreqItemSet() {
// 计算频繁1-项集
Set<Set<String>> freqKItemSet = this.getFreq1ItemSet().keySet();
freqItemSet.put(1, freqKItemSet);
// 计算频繁k-项集(k>1)
int k = 2;
while(true) {
Map<Set<String>, Float> freqKItemSetMap = this.getFreqKItemSet(k, freqKItemSet);
if(!freqKItemSetMap.isEmpty()) {
this.freqItemSet.put(k, freqKItemSetMap.keySet());
freqKItemSet = freqKItemSetMap.keySet();
}
else {
break;
}
k++;
}
}
public void mineAssociationRules() {
freqItemSet.remove(1); // 删除频繁1-项集
Iterator<Map.Entry<Integer, Set<Set<String>>>> it = freqItemSet.entrySet().iterator();
while(it.hasNext()) {
Map.Entry<Integer, Set<Set<String>>> entry = it.next();
for(Set<String> itemSet : entry.getValue()) {
// 对每个频繁项集进行关联规则的挖掘
mine(itemSet);
}
}
}
public void mine(Set<String> itemSet) {
int n = itemSet.size()/2; // 根据集合的对称性,只需要得到一半的真子集
for(int i=1; i<=n; i++) {
// 得到频繁项集元素itemSet的作为条件的真子集集合
Set<Set<String>> properSubset = ProperSubsetCombination.getProperSubset(i, itemSet);
// 对条件的真子集集合中的每个条件项集,获取到对应的结论项集,从而进一步挖掘频繁关联规则
for(Set<String> conditionSet : properSubset) {
Set<String> conclusionSet = new HashSet<String>();
conclusionSet.addAll(itemSet);
conclusionSet.removeAll(conditionSet); // 删除条件中存在的频繁项
confide(conditionSet, conclusionSet); // 调用计算置信度的方法,并且挖掘出频繁关联规则
}
}
}
public void confide(Set<String> conditionSet, Set<String> conclusionSet) {
// 扫描事务数据库
Iterator<Map.Entry<Integer, Set<String>>> it = txDatabase.entrySet().iterator();
// 统计关联规则支持计数
int conditionToConclusionCnt = 0; // 关联规则(条件项集推出结论项集)计数
int conclusionToConditionCnt = 0; // 关联规则(结论项集推出条件项集)计数
int supCnt = 0; // 关联规则支持计数
while(it.hasNext()) {
Map.Entry<Integer, Set<String>> entry = it.next();
Set<String> txSet = entry.getValue();
Set<String> set1 = new HashSet<String>();
Set<String> set2 = new HashSet<String>();
set1.addAll(conditionSet);
set1.removeAll(txSet); // 集合差运算:set-txSet
if(set1.isEmpty()) { // 如果set为空,说明事务数据库中包含条件频繁项conditionSet
// 计数
conditionToConclusionCnt++;
}
set2.addAll(conclusionSet);
set2.removeAll(txSet); // 集合差运算:set-txSet
if(set2.isEmpty()) { // 如果set为空,说明事务数据库中包含结论频繁项conclusionSet
// 计数
conclusionToConditionCnt++;
}
if(set1.isEmpty() && set2.isEmpty()) {
supCnt++;
}
}
// 计算置信度
Float conditionToConclusionConf = new Float(supCnt)/new Float(conditionToConclusionCnt);
if(conditionToConclusionConf>=minConf) {
if(assiciationRules.get(conditionSet) == null) { // 如果不存在以该条件频繁项集为条件的关联规则
Set<Set<String>> conclusionSetSet = new HashSet<Set<String>>();
conclusionSetSet.add(conclusionSet);
assiciationRules.put(conditionSet, conclusionSetSet);
}
else {
assiciationRules.get(conditionSet).add(conclusionSet);
}
}
Float conclusionToConditionConf = new Float(supCnt)/new Float(conclusionToConditionCnt);
if(conclusionToConditionConf>=minConf) {
if(assiciationRules.get(conclusionSet) == null) { // 如果不存在以该结论频繁项集为条件的关联规则
Set<Set<String>> conclusionSetSet = new HashSet<Set<String>>();
conclusionSetSet.add(conditionSet);
assiciationRules.put(conclusionSet, conclusionSetSet);
}
else {
assiciationRules.get(conclusionSet).add(conditionSet);
}
}
}
public Map<Integer, Set<Set<String>>> getFreqItemSet() {
return freqItemSet;
}
public Map<Set<String>, Set<Set<String>>> getAssiciationRules() {
return assiciationRules;
}
}
(二)辅助类
ProperSubsetCombination类是一个辅助类,在挖掘频繁关联规则的过程中,用于生成一个频繁项集元素的非空真子集,实现代码如下:
package org.shirdrn.datamining.association;
import java.util.BitSet;
import java.util.HashSet;
import java.util.Set;
public class ProperSubsetCombination {
private static String[] array;
private static BitSet startBitSet; // 比特集合起始状态
private static BitSet endBitSet; // 比特集合终止状态,用来控制循环
private static Set<Set<String>> properSubset; // 真子集集合
public static Set<Set<String>> getProperSubset(int n, Set<String> itemSet) {
String[] array = new String[itemSet.size()];
ProperSubsetCombination.array = itemSet.toArray(array);
properSubset = new HashSet<Set<String>>();
startBitSet = new BitSet();
endBitSet = new BitSet();
// 初始化startBitSet,左侧占满1
for (int i=0; i<n; i++) {
startBitSet.set(i, true);
}
// 初始化endBit,右侧占满1
for (int i=array.length-1; i>=array.length-n; i--) {
endBitSet.set(i, true);
}
// 根据起始startBitSet,将一个组合加入到真子集集合中
get(startBitSet);
while(!startBitSet.equals(endBitSet)) {
int zeroCount = 0; // 统计遇到10后,左边0的个数
int oneCount = 0; // 统计遇到10后,左边1的个数
int pos = 0; // 记录当前遇到10的索引位置
// 遍历startBitSet来确定10出现的位置
for (int i=0; i<array.length; i++) {
if (!startBitSet.get(i)) {
zeroCount++;
}
if (startBitSet.get(i) && !startBitSet.get(i+1)) {
pos = i;
oneCount = i - zeroCount;
// 将10变为01
startBitSet.set(i, false);
startBitSet.set(i+1, true);
break;
}
}
// 将遇到10后,左侧的1全部移动到最左侧
int counter = Math.min(zeroCount, oneCount);
int startIndex = 0;
int endIndex = 0;
if(pos>1 && counter>0) {
pos--;
endIndex = pos;
for (int i=0; i<counter; i++) {
startBitSet.set(startIndex, true);
startBitSet.set(endIndex, false);
startIndex = i+1;
pos--;
if(pos>0) {
endIndex = pos;
}
}
}
get(startBitSet);
}
return properSubset;
}
private static void get(BitSet bitSet) {
Set<String> set = new HashSet<String>();
for(int i=0; i<array.length; i++) {
if(bitSet.get(i)) {
set.add(array[i]);
}
}
properSubset.add(set);
}
}
测试用例
对上述Apriori算法的实现进行了简单的测试,测试用例如下所示:
package org.shirdrn.datamining.association;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;
import java.util.TreeSet;
import org.shirdrn.datamining.association.AprioriAlgorithm;
import junit.framework.TestCase;
public class TestAprioriAlgorithm extends TestCase {
private AprioriAlgorithm apriori;
private Map<Integer, Set<String>> txDatabase;
private Float minSup = new Float("0.50");
private Float minConf = new Float("0.70");
@Override
protected void setUp() throws Exception {
create(); // 构造事务数据库
apriori = new AprioriAlgorithm(txDatabase, minSup, minConf);
}
public void create() {
txDatabase = new HashMap<Integer, Set<String>>();
Set<String> set1 = new TreeSet<String>();
set1.add("A");
set1.add("B");
set1.add("C");
set1.add("E");
txDatabase.put(1, set1);
Set<String> set2 = new TreeSet<String>();
set2.add("A");
set2.add("B");
set2.add("C");
txDatabase.put(2, set2);
Set<String> set3 = new TreeSet<String>();
set3.add("C");
set3.add("D");
txDatabase.put(3, set3);
Set<String> set4 = new TreeSet<String>();
set4.add("A");
set4.add("B");
set4.add("E");
txDatabase.put(4, set4);
}
public void testFreq1ItemSet() {
System.out.println("挖掘频繁1-项集 : " + apriori.getFreq1ItemSet());
}
public void testAprioriGen() {
System.out.println(
"候选频繁2-项集 : " +
this.apriori.aprioriGen(1, this.apriori.getFreq1ItemSet().keySet())
);
}
public void testGetFreq2ItemSet() {
System.out.println(
"挖掘频繁2-项集 :" +
this.apriori.getFreqKItemSet(2, this.apriori.getFreq1ItemSet().keySet())
);
}
public void testGetFreq3ItemSet() {
System.out.println(
"挖掘频繁3-项集 :" +
this.apriori.getFreqKItemSet(
3,
this.apriori.getFreqKItemSet(2, this.apriori.getFreq1ItemSet().keySet()).keySet()
)
);
}
public void testGetFreqItemSet() {
this.apriori.mineFreqItemSet(); // 挖掘频繁项集
System.out.println("挖掘频繁项集 :" + this.apriori.getFreqItemSet());
}
public void testMineAssociationRules() {
this.apriori.mineFreqItemSet(); // 挖掘频繁项集
this.apriori.mineAssociationRules();
System.out.println("挖掘频繁关联规则 :" + this.apriori.getAssiciationRules());
}
}
测试结果:
挖掘频繁1-项集 : {[E]=0.5, [A]=0.75, [B]=0.75, [C]=0.75}
候选频繁2-项集 : [[E, C], [A, B], [B, C], [A, C], [E, B], [E, A]]
挖掘频繁2-项集 :{[A, B]=0.75, [B, C]=0.5, [A, C]=0.5, [E, B]=0.5, [E, A]=0.5}
挖掘频繁3-项集 :{[E, A, B]=0.5, [A, B, C]=0.5}
挖掘频繁项集 :{1=[[E], [A], [B], [C]], 2=[[A, B], [B, C], [A, C], [E, B], [E, A]], 3=[[E, A, B], [A, B, C]]}
挖掘频繁关联规则 :{[E]=[[A], [B], [A, B]], [A]=[[B]], [B]=[[A]], [B, C]=[[A]], [A, C]=[[B]], [E, B]=[[A]], [E, A]=[[B]]}
从测试结果看到,使用Apriori算法挖掘得到的全部频繁项集为:
{1=[[E], [A], [B], [C]], 2=[[A, B], [B, C], [A, C], [E, B], [E, A]], 3=[[E, A, B], [A, B, C]]}
使用Apriori算法挖掘得到的全部频繁关联规则为:
{E}→{A}、{E}→{B}、{E}→{A,B}、{A}→{B}、{B}→{A}、{B,C}→{A}、{A,C}→{B}、{B,E}→{A}、{A,E}→{B}。
关联规则算法Apriori的学习与实现的更多相关文章
- Python机器学习算法 — 关联规则(Apriori、FP-growth)
关联规则 -- 简介 关联规则挖掘是一种基于规则的机器学习算法,该算法可以在大数据库中发现感兴趣的关系.它的目的是利用一些度量指标来分辨数据库中存在的强规则.也即是说关联规则挖掘是用于知识发现,而非预 ...
- 数据挖掘:关联规则的apriori算法在weka的源码分析
相对于机器学习,关联规则的apriori算法更偏向于数据挖掘. 1) 测试文档中调用weka的关联规则apriori算法,如下 try { File file = new File("F:\ ...
- 数据挖掘算法——Apriori
在上一篇数据挖掘入门算法整理中提到,Apriori算法是关联规则算法中使用最为广泛的算法,这次我们就来学习下该算法的基本知识. 一.算法概述 Apriori 算法是一种最有影响力的挖掘布尔关联规则的频 ...
- 机器学习理论与实战(十一)关联规则分析Apriori
<机器学习实战>的最后的两个算法对我来说有点陌生,但学过后感觉蛮好玩,了解了一般的商品数据关联分析和搜索引擎智能提示的工作原理.先来看看关联分析(association analysis) ...
- Netflix工程总监眼中的分类算法:深度学习优先级最低
Netflix工程总监眼中的分类算法:深度学习优先级最低 摘要:不同分类算法的优势是什么?Netflix公司工程总监Xavier Amatriain根据奥卡姆剃刀原理依次推荐了逻辑回归.SVM.决策树 ...
- HotSpot关联规则算法(2)-- 挖掘连续型和离散型数据
本篇代码可在 http://download.csdn.net/detail/fansy1990/8502323下载. 前篇<HotSpot关联规则算法(1)-- 挖掘离散型数据>分析了离 ...
- Raft算法,从学习到忘记
Raft算法,从学习到忘记 --Raft算法阅读笔记. --Github 概述 说到分布式一致性算法,可能大多数人的第一反应是paxos算法.但是paxos算法一直以来都被认为是难以理解,难以实现.S ...
- 牛客网《BAT面试算法精品课》学习笔记
目录 牛客网<BAT面试算法精品课>学习笔记 牛客网<BAT面试算法精品课>笔记一:排序 牛客网<BAT面试算法精品课>笔记二:字符串 牛客网<BAT面试算法 ...
- 数论算法 剩余系相关 学习笔记 (基础回顾,(ex)CRT,(ex)lucas,(ex)BSGS,原根与指标入门,高次剩余,Miller_Rabin+Pollard_Rho)
注:转载本文须标明出处. 原文链接https://www.cnblogs.com/zhouzhendong/p/Number-theory.html 数论算法 剩余系相关 学习笔记 (基础回顾,(ex ...
随机推荐
- hdu 1095 A+B for Input-Output Practice (VII)
A+B for Input-Output Practice (VII) Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32 ...
- [MSDN]使用 REST 处理文件夹和文件
msdn: http://msdn.microsoft.com/zh-cn/library/dn292553.aspx 了解如何使用 SharePoint 2013 REST 界面对文件夹和文件执行基 ...
- Android系统中的dp和px的转换
android系统中DP和SP的转化:1.首先分析TypedValue.java 可以调用以下代码获得dp的值 TypedValue.applyDimension(TypedValue.COMPLEX ...
- OPENSSL中RSA私钥文件(PEM格式)解析【一】
http://blog.sina.com.cn/s/blog_4fcd1ea30100yh4s.html 在PKCS#1 RSA算法标准中定义RSA私钥语法为: RSAPrivateKey ::= S ...
- 学习笔记1_Day09_Servlet
生命周期方法: l void init(ServletConfig):出生之后(1次): l void service(ServletRequest request, ServletRespons ...
- JQuery里的原型prototype分析
在 JavaScript 中,每个函数对象都有一个默认的属性 prototype,称为函数对象的原型成员,这个属性指向一个对象,称为函数的原型对象,当我们每定义了一个函数的时候,JavaScript ...
- 第二十六篇、因为自定item(nav)而使系统右滑返回手势失效的解决方法
@interface ViewController () <uigesturerecognizerdelegate> @end@implementation ViewController ...
- 【我们都爱Paul Hegarty】斯坦福IOS8公开课个人笔记2 Xcode、Auto Layout及MVC
原文链接不知道在哪, 接着上一话来讲,上一话中讲到了MVC,那么MVC在IOS8开发中是如何应用的呢?Paul Hegarty老师给我们展示了一个计算器的Demo,首先新建一个工程,老师把AppDel ...
- 一个简单的Inno Setup例子
; 脚本由 Inno Setup 脚本向导 生成! ; 有关创建 Inno Setup 脚本文件的详细资料请查阅帮助文档! [Setup] ; 注: AppId的值为单独标识该应用程序. ; 不要为其 ...
- mysql索引使用笔记
1.使用explain语句查看性能mysql> explain select product_id from orders where order_id in (123, 312, 223, 1 ...