SDUT 1646 Complicated Expressions
http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=1646
题意 : 话说我根本没读题,,,因为实在是太长了,我去看了输入输出才知道题讲的什么,大意是说给你一串运算式,里边包含了很多的多余的括号,让你去掉那些多余的括号,但是不能改变原来的式子中字母和运算符的位置。
思路 :比赛的时候根本没做出来,当时并没有什么思路,一开始是单纯的以为模拟,但是想了想又不太是,所以没敢去做,这个题最重要的就是找到运算符的优先级,然后才能进行操作,所以可以先去掉所有的括号,然后再在合适的位置往上填括号即可。
先将题目中的中缀式转化成后缀表达式,这样就可以去掉所有的括号,而且也没有改变他的运算结果,然后再将后缀表达式转化成中缀式,在转化的过程下注意在该在的位置填上括号即可。
先说一下中缀式转化成后缀式的方法:用一个post数组来存要转化成的后缀式,再用一个栈来临时存运算符,然后将中缀式从头开始往后循环即可
1. 如果是数字直接存入数组即可。
2. 如果是左括号则直接入栈,如果是右括号,则不进栈,并且将左括号上边的那些运算符全部出栈并且按出栈顺序存到post数组中,然后左括号出栈,舍弃。
3. 如果是“+”或“-”,要将栈中左括号上方所有的运算符出栈并按出栈顺序存到post数组中,如果没有左括号,就全部出栈存到数组中,然后将新的加减号存到栈里。
4. 如果是“*或“/”,则判断栈顶是否为“*”“/”,如果是则其出栈,然后将新的乘除号入栈,如果不是则直接将新的乘除号入栈。
再说一下后缀式转中缀式,这个我不会,看了网上大神写的,看了一下觉得很不错。就是通过动态合并的方式进行的,例如,a Y b ,a,b作为表达式,Y是运算符,如果是a b Y的话,就可以将这两个表达式合并成a Y b了,然后再判断一下左表达式是否需要添加括号,当左表达式里有运算符+或-时并且Y是“*”"/"的时候左表达式需要加括号,而右表达式不光是这种情况,还有就是Y是“-”而右表达式中有+的时候,或者是Y是“/”而右表达式中有乘号的时候需要加括号,只要判断一下即可。
#include <stdio.h>
#include <iostream>
#include <string.h>
#include <stack> using namespace std ; char str[],post[] ;
int pre(char c)
{
int s = (c == '+' || c == '-') ? : ;
return s ;
}
void parse() {
// 因为表达式不定长,并且需要动态合并表达式,所以如果为每个表达式分配
// 定长空间,则浪费应该很严重。所以所有的表达式都存储在result这片空间上
// result可以理解为表达式栈。start[i]表示第i个表达式的起始下标,end[i]
// 表示结束下标,使用半开半闭区间,即第i个表达式长度为end[i]-start[i]。
// preStack为优先级栈,preStack[i]表示第i个表达式的优先级。
// cnt为当前产生的表达式个数。
char result[];
int len = strlen(post) ;
int start[];
int end[], preStack[];
int i, cnt = , preLeft, preRight, p, k, t;
start[] = end[] = ;
for(i = ; i < len; i++) {
if(isalpha(post[i])) {
++cnt;
start[cnt] = end[cnt-] + ;
result[start[cnt]] = post[i];
end[cnt] = start[cnt] + ;
preStack[cnt] = ;
} else {
p = pre(post[i]);
preLeft = preStack[cnt-];
preRight = preStack[cnt];
// 为左表达式加括号
if(preLeft < p) {
result[start[cnt-] - ] = '(';
start[cnt-] -= ;
result[end[cnt-]] = ')';
end[cnt-] += ;
}
// 为右表达式加括号
if(preRight < p || (preRight == p && (post[i] == '-' || post[i] == '/')))
{
result[start[cnt] - ] = '(';
start[cnt] -= ;
result[end[cnt]] = ')';
end[cnt] += ;
}
// 合并两个表达式
result[end[cnt-]] = post[i];
end[cnt-] += ;
for(k = end[cnt-], t = start[cnt]; t < end[cnt]; k++, t++)
result[k] = result[t];
end[cnt-] = k;
cnt -= ;
preStack[cnt] = p;
}
}
for(i = ; i <= cnt; i++) {
result[end[i]] = ;
printf("%s", result + start[i]);
}
printf("\n");
} void in()
{
int len = strlen(str) ;
int top = ;
stack<char>Q ;
for(int i = ; i < len ; i++)
{
switch(str[i])
{
case '+' :
case '-' :
while(!Q.empty() && Q.top() != '(')
{
post[top++] = Q.top() ;
Q.pop() ;
}
Q.push(str[i]) ;
break ;
case '(' :
Q.push(str[i]) ;
break ;
case ')' :
while(Q.top() != '(')
{
post[top++] = Q.top() ;
Q.pop() ;
}
Q.pop() ;
break ;
case '*' :
case '/' :
if(!Q.empty() && (Q.top() == '*' || Q.top() == '/'))
{
post[top++] = Q.top() ;
Q.pop() ;
}
Q.push(str[i]) ;
break ;
default:
post[top++] = str[i] ;
break ;
}
}
while(!Q.empty())
{
post[top++] = Q.top() ;
Q.pop() ;
}
post[top] = '\0' ;
}
int main()
{
int n ;
scanf("%d",&n) ;
while(n--)
{
scanf("%s",str) ;
in() ;
parse() ;
}
return ;
}
SDUT 1646 Complicated Expressions的更多相关文章
- Complicated Expressions(表达式转换)
http://poj.org/problem?id=1400 题意:给出一个表达式可能含有多余的括号,去掉多余的括号,输出它的最简形式. 思路:先将表达式转化成后缀式,因为后缀式不含括号,然后再转化成 ...
- (转) Pointers
原地址 http://www.cplusplus.com/doc/tutorial/pointers/ Pointers In earlier chapters, variables have bee ...
- Impala SQL 语言元素(翻译)[转载]
原 Impala SQL 语言元素(翻译) 本文来源于http://my.oschina.net/weiqingbin/blog/189413#OSC_h2_2 摘要 http://www.cloud ...
- C++ Core Guidelines
C++ Core Guidelines September 9, 2015 Editors: Bjarne Stroustrup Herb Sutter This document is a very ...
- Impala SQL 语言元素(翻译)
摘要: http://www.cloudera.com/content/cloudera-content/cloudera-docs/Impala/latest/Installing-and-Usin ...
- Note 2 for <Pratical Programming : An Introduction to Computer Science Using Python 3>
Book Imformation : <Pratical Programming : An Introduction to Computer Science Using Python 3> ...
- LATEX公式语法
see how any formula was written in any question or answer, including this one, right-click on the ex ...
- 【Cron Expressions】Quartz Scheduler 2.1.x 英文节选
Cron Expressions Cron-Expressions are used to configure instances ofCronTrigger. Cron-Expressions ar ...
- Python之Regular Expressions(正则表达式)
在编写处理字符串的程序或网页时,经常会有查找符合某些复杂规则的字符串的需要.正则表达式就是用于描述这些规则的工具.换句话说,正则表达式就是记录文本规则的代码. 很可能你使用过Windows/Dos下用 ...
随机推荐
- C# string类型遇到的两个问题
最近在维护一位离职的同事写的WPF代码,偶然发现他使用C# string类型的两个问题,在这里记录一下. 1. 使用Trim函数移除字串中的空格.换行符等字符串. csRet.Trim(new cha ...
- 命令行创建AVD
1.命令行创建AVD android create avd -n myAvd -t 8 -b armeabi-v7a -p d:\scard.img -s HVGA 2.删除AVD android d ...
- Java_链表实现
http://blog.csdn.net/a19881029/article/details/22695289
- Ext.Net学习笔记17:Ext.Net GridPanel Selection
Ext.Net学习笔记17:Ext.Net GridPanel Selection 接下来是Ext.Net的GridPanel的另外一个功能:选择. 我们在GridPanel最开始的用法中已经见识过如 ...
- 关于XML与类型Class的映射
我们知道数据的持久化是编程必须面对的问题.我们可以保存数据到数据库.Excel表.XML文件.TXT文件等等.那么我们编程中经常会遇到对Xml文件的操作.在http://www.cnblogs.com ...
- 如何在Markdown、HTML编辑器上输入一些特殊字符
如何输入EntityCode 参考: 1.EntityCode 2.Common HTML entities used for typography 3.Latin Supplement-拉丁补充
- C++ 中的类型转换机制详解
Tips: This article based on Scott Meyers's <<Effective C++>> article 27: Minimize Castin ...
- 九度OJ 1512 用两个栈实现队列 【数据结构】
题目地址:http://ac.jobdu.com/problem.php?pid=1512 题目描述: 用两个栈来实现一个队列,完成队列的Push和Pop操作. 队列中的元素为int类型. 输入: 每 ...
- MySQL二进制文件规范安装
演示环境介绍 操作系统:CentOS 6.7 (64位) 二进制包:mysql-5.6.30-linux-glibc2.5-x86_64.tar.gz MySQL 下载地址:http://dev.m ...
- struts2 修改action的后缀
struts2 修改action的后缀 struts2 的默认后缀是 .action 虽然很直观,但是很烦琐.很多人喜欢将请求的后缀改为 .do 在struts2中修改action后缀有两种比较简单的 ...