1. 证明 $(10'$).

证明: $\ra$: 由 $p_K(x)<1$ 知 $$\bex \exists\ 0<a<1,\st \cfrac{x}{a}\in K. \eex$$ 既然 $0$ 是 $K$ 的内点, $$\bex \forall\ y,\ \exists\ \ve=\ve(y)>0,\st |t|<\cfrac{\ve}{1-a}\ra ty\in K. \eex$$ 于是由 $K$ 的凸性, $$\bex |t|<\ve\ra x+ty =a\cdot \cfrac{x}{a} +(1-a)\cdot\sex{\cfrac{t}{1-a}y}\in K. \eex$$ $\ra$: 设 $x$ 为 $K$ 的内点. 若 $x=0$, 则 $p_K(x)=0$. 若 $x\neq 0$, 则 $$\bex \exists\ \ve=\ve(x)>0,\st |t|<\ve\ra x+tx\in K. \eex$$ 特别地, $$\bex \cfrac{x}{\cfrac{1}{1+\cfrac{\ve}{2}}}=x+\cfrac{\ve}{2}x\in K. \eex$$ 于是 $$\bex p_K(x)\leq \cfrac{1}{1+\cfrac{\ve}{2}}<1. \eex$$

2. 证明定理 4.

证明: (ii) 的证明与 (i) 类似, 而只证 (i). 设 $K=\sed{x\in X; p(x)<1}$, 则对 $\forall\ x,y\in K$, $0<a<1$, $$\beex \bea p(ax+(1-a)y)&\leq p(ax)+p((1-a)y)\\ &=ap(x)+(1-a)p(y)\\ &<a+(1-a)\\ &=a;\\ ax+(1-a)y&\in K. \eea \eeex$$ 另外, $0\in K$, 且对 $\forall\ y\neq 0$, 只要 $$\bex |t|<\min\sed{\cfrac{1}{|p(y)|+1},\cfrac{1}{|p(-y)|+1}}, \eex$$ 就有 $$\beex \bea t>0&\ra p(ty)=t\cdot p(y)<\cfrac{p(y)}{|p(y)|+1}<1,\\ t<0&\ra p(ty)=-t\cdot p(-y)<\cfrac{p(-y)}{|p(-y)|+1}<1. \eea \eeex$$

3. 证明: 若条件 (17) 改为 $p({\bf A} x)\leq p(x)$, 定理 7 仍成立.

证明: 检查定理 7 的证明即知结论成立.

错误指出:

Page 19, 定理 5 第 2 行, 数域应该去掉.

[PeterDLax著泛函分析习题参考解答]第3章 Hahn-Banach 定理的更多相关文章

  1. [PeterDLax著泛函分析习题参考解答]第2章 线性映射

    1. 验证两个线性映射的复合仍是线性映射而且满足分配律: $$\bex {\bf M}({\bf N}+{\bf K})={\bf M}{\bf N}+{\bf M}{\bf K},\quad ({\ ...

  2. [PeterDLax著泛函分析习题参考解答]第1章 线性空间

    1. 证明定理 1. 2. 验证上述结论. 3. 证明定理 3. 4. 证明定理 4. 证明: 由 $$\bex x=\sum_{k=1}^{n-1}a_k\cdot \sum_{j=1}^{n-1} ...

  3. [PeterDLax著泛函分析习题参考解答]第6章 Hilbert 空间

    1. 证明满足 (6) 的范数可以由一个内积诱导出来. 这个结论属于 von Neumann. 证明: 以实线性空间为例, 取内积 $$\bex \sex{x,y}=\cfrac{1}{4}[\sen ...

  4. [PeterDLax著泛函分析习题参考解答]第5章 赋范线性空间

    1. (a) 证明 (6) 定义了范数. (b) 证明它们在 (5) 式意义下是等价的. 证明: $$\bex |(z,u)|'\leq |(z,u)|\leq 2|(z,u)|',\quad |(z ...

  5. [PeterDLax著泛函分析习题参考解答]第7章 Hilbert 空间结果的应用

    1. 对测度是 $\sigma$ 有限的情形证明 Radon-Nikodym 定理. 证明: 设 $\mu,\nu$ 均为 $\sigma$ 有限的非负测度, 则存在分割 $$\bex X=\cup_ ...

  6. [PeterDLax著泛函分析习题参考解答]第4章 Hahn-Bananch 定理的应用

    1. 证明: 若在 4.1 节中取 $S=\sed{\mbox{正整数}}$, $Y$ 是收敛数列构成的空间, $\ell$ 由 (14) 式定义, 则由 (4) 给出的 $p$ 和由 (11) 定义 ...

  7. [物理学与PDEs]第1章习题参考解答

    [物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...

  8. [物理学与PDEs]第2章习题参考解答

    [物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...

  9. [物理学与PDEs]第3章习题参考解答

    [物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...

随机推荐

  1. ios开发中button控件的属性及常见问题

    最为最基本的控件,我们必须对button的每个常用属性都熟练应用: 1,使用之前,必须对按钮进行定义,为乐规范,在@interface ViewController (){}中进行定义,先定义后使用. ...

  2. POJ 3254 Corn Fields(DP + 状态压缩)

    题目链接:http://poj.org/problem?id=3254 题目大意:Farmer John 放牧cow,有些草地上的草是不能吃的,用0表示,然后规定两头牛不能相邻放牧.问你有多少种放牧方 ...

  3. 嵌入Web资源的方法

    可以将js .图片.css等嵌入Assembly中,这样就不用将文件在aspx中写了,特别适合做自定义控件的时候将控件用到的资源打包. 将文件放到项目的合适路径,比如jpg文件所在路径的namespa ...

  4. Nginx常用伪静态规则(rewrite)-Discuz X3.2-WordPress-PHPCMS-ECSHOP-SHOPE(转)

    当我们从apache服务器转向Nginx服务器的时候,它们的伪静态规则就不一样了,所以你熟悉Nginx服务器的伪静态规则,自己写当然也好.不了解Nginx服务器的伪静态规则的,为方便各位站长,收集了这 ...

  5. Python:如何得到Popen的输出?

    from:http://www.cnblogs.com/bluescorpio/archive/2010/05/04/1727020.html 最近在用subprocess中的Popen做个磁盘监控小 ...

  6. linux基础之Shell Script入门介绍

    本文介绍下,学习shell script编程的入门知识,通过几个入门实例,带领大家走进shell script的神圣殿堂,呵呵,有需要的朋友参考下. 本文转自:http://www.jbxue.com ...

  7. windows下Apache配置SSL安全连接

    什么是SSL? SSL(Secure Socket Layer): 是为Http传输提供安全的协议,通过证书认证来确保客户端和网站服务器之间的数据是安全.Open SSL下载地址:http://www ...

  8. MySQL字符串中数字排序的问题

    1.select * from table where 1   order by id*1 desc; 2.select * from table where 1 order by id+0 desc ...

  9. XStream简单使用01——xml和Ojbect互转

    package org.zhb.test; /** * author : zhb * data : 2014-2-14 * use packages: * xmlpull-1.1.3.1.jar * ...

  10. #Leet Code# Populating Next Right Pointers in Each Node II

    描述:注意需要先self.connect(right)再self.connect(left),否则会有case通不过,原因是左边递归执行时依赖与右边的next已经建立,而先执行connect(left ...