1053: [HAOI2007]反素数ant

Time Limit: 10 Sec  Memory Limit: 162 MB
Submit: 1497  Solved: 821
[Submit][Status]

Description

对于任何正整数x,其约数的个数记作g(x)。例如g(1)=1、g(6)=4。
如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数。例如,整数1,2,4,6等都是反质数。
现在给定一个数N,你能求出不超过N的最大的反质数么?

Input

一个数N(1<=N<=2,000,000,000)。

Output

不超过N的最大的反质数。

Sample Input

1000

Sample Output

840

HINT

 

Source

   這種題應該是通過看數據範圍和解的密度可以發現這是打表,而實際證明連打表都不用,直接暴力構造搜索就行了,搜索中避免如下數字:質因數不連續,質因數過大。這樣解的空間就很小了。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<string>
#include<queue>
using namespace std;
#ifdef WIN32
#define LL "%I64d"
#else
#define LL "%lld"
#endif
#define MAXN 11000000
#define MAXV MAXN*2
#define MAXE MAXV*2
#define INF 0x3f3f3f3f
#define INFL 0x3f3f3f3f3f3f3f3fLL
#define MAXL 2100000000
typedef long long qword;
inline int nextInt()
{
char ch;
int x=;
bool flag=false;
do
ch=getchar(),flag=(ch=='-')?true:flag;
while(ch<''||ch>'');
do x=x*+ch-'';
while (ch=getchar(),ch<='' && ch>='');
return x*(flag?-:);
} int n,m;
int seq[MAXN],tops=-;
int prime[]={,,,,,,,,,,,,,,,,,,,,,,,,,,,,,};
struct aaa
{
int v,x;
}a[MAXN];
bool cmp_x(aaa a1,aaa a2)
{
return a1.x<a2.x;
}
int topa=-;
void search_m(qword now,int l,int tot)
{
int i;
int x;
if (l== || now>=MAXL)return ;
// cout<<now<<" "<<tot<<endl;
a[++topa].x=now;
a[topa].v=tot;
l++;
x=;
for (i=;i< && now<MAXL;i++)
{
now*=prime[l];
x++;
search_m(now,l,tot*x);
}
} int main()
{
freopen("input.txt","r",stdin);
//freopen("output.txt","w",stdout);
int i,j,k;
int x,y,z;
int tot;
int mx=;
scanf("%d",&n);
search_m(,-,);
sort(a,a+topa+,cmp_x);
for (i=;i<=topa;i++)
{
if (a[i].v>mx)
{
mx=a[i].v;
if (a[i].x>n)
{
cout<<x<<endl;
return ;
}
x=a[i].x;
}
}
return ;
/* x=1;
mx=0;
for (i=1;i<=n;i++)
{
tot=0;
for (j=1;j<=i;j++)
{
if (i%j==0)tot++;
}
if (tot>mx)
{
mx=tot;
cout<<i<<" "<<tot<<" "<<endl;
x=i;
} }
cout<<endl;*/
return ;
}

bzoj 1053: [HAOI2007]反素数ant 搜索的更多相关文章

  1. BZOJ 1053: [HAOI2007]反素数ant dfs

    1053: [HAOI2007]反素数ant 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1053 Description 对于任何正整 ...

  2. BZOJ 1053 [HAOI2007]反素数ant

    1053: [HAOI2007]反素数ant Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1948  Solved: 1094[Submit][St ...

  3. BZOJ 1053 [HAOI2007]反素数ant 神奇的约数

    本蒟蒻终于开始接触数学了...之前写的都忘了...忽然想起来某神犇在几个月前就切了FWT了... 给出三个结论: 1.1-N中的反素数是1-N中约数最多但是最小的数 2.1-N中的所有数的质因子种类不 ...

  4. BZOJ 1053 [HAOI2007]反素数ant(约数个数)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1053 [题目大意] 于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6 ...

  5. bzoj 1053 [HAOI2007]反素数ant——关于质数的dfs / 打表

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1053 写了个打表程序. #include<iostream> #include& ...

  6. 【BZOJ】1053: [HAOI2007]反素数ant

    1053: [HAOI2007]反素数ant Description: g(x)表示x的约数个数,反素数:对于任意的i (i < x),均有g(i) < g(x),则x为反素数:现在输入不 ...

  7. 【BZOJ 1053】 1053: [HAOI2007]反素数ant (反素数)

    1053: [HAOI2007]反素数ant Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0&l ...

  8. BZOJ(8) 1053: [HAOI2007]反素数ant

    1053: [HAOI2007]反素数ant Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4118  Solved: 2453[Submit][St ...

  9. 1053: [HAOI2007]反素数ant

    1053: [HAOI2007]反素数ant Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3480  Solved: 2036[Submit][St ...

随机推荐

  1. Block使用变量,让你的程序看起来清晰!

    <span style="font-size:24px;">为什么要使用block变量呢? 由于当我们的程序比較繁杂的时候,我们在一个函数中要调用一个函数,还须要在外边 ...

  2. linux文件的隐藏属性:chattr

    1. 文件的隐藏属性 linux除了9个权限外,还有些隐藏属性, 使用chattr命令来设置. 使用方法: $ chattr +-=[ASacDdIijsTtu] + : 添加一个特殊參数 - :   ...

  3. android 74 下载文本

    页面: <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns:tool ...

  4. mysql导出部分数据的几种方法(摘录)

    mysql虽然可以使用mysqldump来进行数据的到处,可是在很多场合的需求都不一样,比如我只要导出某个字段呢?只要导出某些我需要的数据呢? 这个时候mysqldump可能就不大好使了 方法一. i ...

  5. Android(java)学习笔记190:Eclipse中的控制台不停报错Can't bind to local 8700 for debugger

    [DDMS] Can't bind to local 8600 for debugger 改成 Under Window -> Preferences -> Android -> D ...

  6. linux64下安装swftools

    在文档转换器中,需要在linux上安装swftools,经历了一番曲折过程终于安装成功.swftools安装包从http://www.swftools.org/download.html上面下载. 在 ...

  7. Pagekit安装

    Pagekit 是一个模块化,轻量的 CMS 系统,基于现代化的技术,如 Symfony 组件和 Doctrine.它提供了一个很好的平台,用于主题和延伸开发.Pagekit 为您提供了工具来创造美丽 ...

  8. user.table.column, table.column 或列说明无效

    Oracle统计采用别名出错(user.table.column, table.column 或列说明无效) >>>>>>>>>>>& ...

  9. ASP.NET项目中使用CKEditor +CKFinder 实现上传图片

    CKEditor是什么 CKEidtor是一个在线富文本编辑器,可以将让用户所见即所得的获得编辑在线文本,编辑器或自动将用户编辑的文字格式转换成html代码. 在ASP.NET工程中添加CKEdito ...

  10. iOS相关,过年回来电脑上的证书都失效了,解决方法。

    今天发了个问题,就是关于电脑上的证书都失效的问题,就这个问题的解决方法如下:https://segmentfault.com/q/1010000004433963 1,按照链接下载,https://d ...