Mondriaan's Dream

Problem Description
Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, after producing the drawings in his 'toilet series' (where he had to use his toilet paper to draw on, for all of his paper was filled with squares and rectangles), he dreamt of filling a large rectangle with small rectangles of width 2 and height 1 in varying ways.

Expert as he was in this material, he saw at a glance that he'll need a computer to calculate the number of ways to fill the large rectangle whose dimensions were integer values, as well. Help him, so that his dream won't turn into a nightmare!

 
Input
The input file contains several test cases. Each test case is made up of two integer numbers: the height h and the width w of the large rectangle. Input is terminated by h=w=0. Otherwise, 1<=h,w<=11. 
 
Output
For each test case, output the number of different ways the given rectangle can be filled with small rectangles of size 2 times 1. Assume the given large rectangle is oriented, i.e. count symmetrical tilings multiple times.
 
Sample Input
1 2
1 3
1 4
2 2
2 3
2 4
2 11
4 11
0 0
 
Sample Output
1
0
1
2
3
5
144
51205
 
题目大意:用长为2,宽为1的矩形填充满长为h,宽为w的矩形有多少种方案?
 
分析:

由于长和宽均小于等于11,故每一行均可用一个2进制数表示其状态。我们用1表示竖放的方格,0表示横放的方格。那么样例中各行的状态分别为:

00100001100

11110011100

11110011001

00111001001

10011000011

10000001111

00001001100

10011100100

10011100111

00001000011

转化为十进制,就是268,1948,1945,457,1219,1039,76,1252,1255,67。

  用dp(i,j)表示第 i 行状态为 j 时,有多少种排法。那么dp(i,j)应该等于前 i-1 行,状态 k 与 j 相符的排法数的和。状态相符,即在 j 二进制数上为1的位,k 一定也为1。在向下递归时,应该把 k 中和 j 二进制状态中同为1的位置为0,即应该求 dp(i-1,k^j),原因是当第 i-1 行与第 i 行相接后,二者同为1的地方消掉了,应该当作0处理。

  所以为了方便,题目描述中那个最大矩阵的第一行就表示为00100001100,第二行就表示为11010010000,这样的话,当上一层j位置为1时,下一层j位置一定为0

当上一层j位置为0时,下一层j位置可以为1,也可以为0,并且当上下都层为0时,零的个数要为偶数,这样上下层的状态相&为0。

  所以dp(i,j)=sum{dp(i-1,k^j),(k&&j)==0&&judge(k^j)}(judge(k)表示k是有效的行状态,即二进制数状态中连续的0个数为偶数,可先生成存入数组中)。所求答案即为dp(n,0).

  初始化dp(0,i)=0,dp(0,0)=1。

  注意结果要用long long或__int64保存,还有要注意位运算的优先级是很低的。

代码如下:

 # include<stdio.h>
__int64 dp[][<<];
int h,w; bool judge(int s){ //判断状态s是否成立
int count;
count = ; //s中0的个数
for(int i=;i<w; i++){
if(s & ){
if(count & ) //1的前面0的个数非偶数,不成立
return false;
}
else
count ++;
s >>= ;
}
if(count & ) //奇数个0,不成立
return false;
else
return true;
} int main(){
int i,j,k;
while(scanf("%d%d",&h,&w),h+w){
if((h*w) & ){ //这种情况下无论如何也不能填满
printf("0\n");
continue;
}
dp[][] = ;
for(i=; i<=h; i++)
for(j=; j<(<<w); j++){
dp[i][j] = ; //初始化
for(k=; k<(<<w); k++)
if((j&k)== && judge(j^k))
dp[i][j] += dp[i-][k];
}
printf("%I64d\n",dp[h][]);
}
return ;
}

HDU 1400 (POJ 2411 ZOJ 1100)Mondriaan's Dream(DP + 状态压缩)的更多相关文章

  1. POJ2411 Mondriaan's Dream(状态压缩)

    Mondriaan's Dream Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 15295   Accepted: 882 ...

  2. poj 2411 Mondriaan's Dream(状态压缩dp)

    Description Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, af ...

  3. POJ 2411 Mondriaan's Dream [经典状态压缩dp]

    题意:略. 思路:这一题开始做的时候完全没有思路,便去看了别人的题解. 首先,对于这个题目解法想有一个初步的了解,请看这里:http://www.2cto.com/kf/201208/146894.h ...

  4. POJ 3311 Hie with the Pie(DP状态压缩+最短路径)

    题目链接:http://poj.org/problem?id=3311 题目大意:一个送披萨的,每次送外卖不超过10个地方,给你这些地方之间的时间,求送完外卖回到店里的总时间最小. Sample In ...

  5. ZOJ 3471 Most Powerful(DP + 状态压缩)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4257 题目大意:有 n(2<=n<=10) 个原子,每两 ...

  6. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  7. HDU 1074 Doing Homework (dp+状态压缩)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1074 题目大意:学生要完成各科作业, 给出各科老师给出交作业的期限和学生完成该科所需时间, 如果逾期一 ...

  8. hdu 4352 数位dp + 状态压缩

    XHXJ's LIS Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  9. [ACM] HDU 1400 Mondriaan&#39;s Dream (状态压缩,长2宽1长方形铺满)

    Mondriaan's Dream Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Othe ...

随机推荐

  1. ASP实现用年月日时分秒和两位随机数字来作为上传文件名的函数

    Public Function GetNewFileName() dim ranNum dim dtNow dtNow=Now() randomize ranNum=int(90*rnd)+10 Ge ...

  2. Js替换地址栏参数

    开了博客竟然有9个月没在来写过了.真是惭愧.今天需要用到一个用js替换地址栏参数的的功能.就自己用JS自己写了一个简单的函数.贴出来仅供大家参考.代码都写了注释.如下: /* js替换URL参数值,无 ...

  3. 代理的使用 一(helloworld级别)

    个人理解(估计,半年一年后,在看到这篇文章的时候,会觉得,当时真的弱爆了) 当我们自定义view的时候,比如说view上面有几个按钮,那么我们在别的地方使用这个view的时候,怎么来处理这些点击事件呢 ...

  4. VS2010 VS2012 如何连接Oracle 11g数据库

    oracle是开发者常用的数据库,在做.NET开发是,由于Vs自带的驱动只能连接oracle 10g及以下版本,那么如何连接oracle 11g呢? 工具/原料   事先安装VS2010或者VS201 ...

  5. 数据库E-R模型,数据字典

    概述:实体-联系模型(简称E-R模型) 模型结构: E-R模型的构成成分是实体集.属性和联系集,其表示方法如下: (1) 实体集用矩形框表示,矩形框内写上实体名. (2) 实体的属性用椭圆框表示,框内 ...

  6. mongodb 数据备份,还原笔记

    公司数据库迁移,所以补充了一下知识: 1 集合的导入和导出 命令行帮助 mongoexport --help  导出 导出 newsServer 数据库下  news 集合 mongoexport - ...

  7. js个人笔记

    一.删除元素 <!DOCTYPE html> <html> <head> <title>删除元素</title> </head> ...

  8. Spring集成PageHelper的简单用法

    1.Maven依赖,注意使用PageHelper时的版本必须与Mybatis版本对应 <!-- 添加Mybatis依赖 --> <dependency> <groupId ...

  9. java集合 collection-list-LinkedList 模拟一个堆栈或者队列数据结构。

    /* 使用LinkedList模拟一个堆栈或者队列数据结构. 堆栈:先进后出 如同一个杯子. 队列:先进先出 First in First out FIFO 如同一个水管. */ import jav ...

  10. 《C#入门典》

    这本书算是我读的第一本关于.NET的书. 上大学的时候,教我们课的老师经常给我们安利"Wrox红皮书",说这是程序员写给程序员的书,有很高的参考价值. 这本书的电子版,有1000多 ...