Farm Tour

题目:

约翰有N块地,家在1号,而N号是个仓库。农场内有M条道路(双向的),道路i连接这ai号地和bi号地,长度为ci。

约翰希望依照从家里出发,经过若干地后达到仓库。然后再返回家中。假设要求往返不能经过同一条道路两次,求參观路线总长度最小值。

算法分析:

用最短路求解然后在删除第一次最短路中的边在求解一次最短路。这样是否可行?应该立即就能找到反例证明该方法不能总得到最优结果吧。

于是我们放弃把问题当作去和回的这样的想法,转而将问题当作求从1号顶点到N号顶点的两条没有公共边的路径有怎样?这样转换之后。不就是求流量为2的最小费用了,由于道路是双向的。

#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <cstdio>
#include <cstring>
using namespace std; /* 流量限制为f下。求解最小费用
时间复杂度:O(F mlogn) */
typedef pair<int,int> P;
const int INF = 1 << 30;
const int MAXN = 1000 + 10; struct Edge{
int to,cap,cost,rev;
Edge(){};
Edge(int _to,int _cap,int _cost,int _rev)
:to(_to),cap(_cap),cost(_cost),rev(_rev){};
}; int V; //顶点
int N,M,S,T;
vector<Edge> G[MAXN];
int h[MAXN]; //顶点的势
int dist[MAXN]; //最短距离
int prevv[MAXN],preve[MAXN]; //最短路中德前驱节点和相应的边 void init(){
S = 1; T = N; V = T + 1;
for(int i = 0;i <= V;++i)
G[i].clear();
} //从图中添加一条从from到to容量为cap费用为cost的边
void addEdge(int from,int to,int cap,int cost){
G[from].push_back(Edge(to,cap,cost,G[to].size()));
G[to].push_back(Edge(from,0,-cost,G[from].size() - 1));
} //求解从s到t流量为f的最小费用流
//假设没有流量为f的流。则返回-1
int min_cost_flow(int s,int t,int f){ //s:起点 t:终点 f:流量限制
int res = 0;
fill(h,h + V,0); //初始化h
while(f > 0){ //使用Dijkstra算法更新h
priority_queue<P,vector<P>,greater<P> > Q;
fill(dist,dist + V,INF);
dist[s] = 0;
Q.push(P(0,s));
while(!Q.empty()){
P p = Q.top(); Q.pop();
int v = p.second;
if(dist[v] < p.first) continue;
for(int i = 0;i < G[v].size();++i){
Edge& e = G[v][i];
int tmp = dist[v] + e.cost + h[v] - h[e.to];
if(e.cap > 0 && dist[e.to] > tmp){
dist[e.to] = tmp;
prevv[e.to] = v;
preve[e.to] = i;
Q.push(P(dist[e.to],e.to));
}
}
} //while //不能增广
if(dist[t] == INF){
return -1;
}
for(int v = 1;v <= V;++v) h[v] += dist[v];
int d = f;
for(int v = t;v != s;v = prevv[v]){
d = min(d,G[prevv[v]][preve[v]].cap);
}
f -= d;
res += d * h[t];
for(int v = t; v != s;v = prevv[v]){
Edge& e = G[prevv[v]][preve[v]];
e.cap -= d;
G[v][e.rev].cap += d;
}
}
return res;
} int main()
{
//freopen("Input.txt","r",stdin); while(~scanf("%d%d",&N,&M)){
init();
int a,b,c;
for(int i = 0;i < M;++i){
scanf("%d%d%d",&a,&b,&c);
addEdge(a,b,1,c);
addEdge(b,a,1,c);
}
printf("%d\n",min_cost_flow(S,T,2));
}
return 0;
}

版权声明:本文博主原创文章,博客,未经同意不得转载。

POJ Farm Tour的更多相关文章

  1. POJ 2135 Farm Tour (网络流,最小费用最大流)

    POJ 2135 Farm Tour (网络流,最小费用最大流) Description When FJ's friends visit him on the farm, he likes to sh ...

  2. poj 2135 Farm Tour 【无向图最小费用最大流】

    题目:id=2135" target="_blank">poj 2135 Farm Tour 题意:给出一个无向图,问从 1 点到 n 点然后又回到一点总共的最短路 ...

  3. 网络流(最小费用最大流):POJ 2135 Farm Tour

    Farm Tour Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on PKU. Original ID: ...

  4. poj 2351 Farm Tour (最小费用最大流)

    Farm Tour Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 17230   Accepted: 6647 Descri ...

  5. POJ2135 Farm Tour

      Farm Tour Time Limit: 2MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u Description ...

  6. POJ2135 Farm Tour —— 最小费用最大流

    题目链接:http://poj.org/problem?id=2135 Farm Tour Time Limit: 1000MS   Memory Limit: 65536K Total Submis ...

  7. [网络流]Farm Tour(费用流

    Farm Tour 题目描述 When FJ's friends visit him on the farm, he likes to show them around. His farm compr ...

  8. Farm Tour(最小费用最大流模板)

    Farm Tour Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18150   Accepted: 7023 Descri ...

  9. POJ 2135 Farm Tour(最小费用最大流)

    Description When FJ's friends visit him on the farm, he likes to show them around. His farm comprise ...

随机推荐

  1. iOS App完整项目

    前言 iOS开发学习者都希望得到实战训练,但是很多资料都是只有一小部分代码,并不能形成完成的App,笔者在此处收集了很多开源的完整的App,都有源代码哦! 完整项目 Phonetic Swift 写的 ...

  2. .net中XML的创建02(linqToXml)

    linqToXml比较的灵活和方便,它是基于函数式编程具体的使用如下:引用程序集using System.Xml.Linq; 1.创建XDocument并设置文档头  XDocument XDoc = ...

  3. 小波 mallat 算法

    算法要求:输入序列是大于滤波器长度的偶数列 确实可以通过编程的手段使算法适合所有的情况,但本文章的目的是展示mallat算法的过程,所以就一切从简了 // Mallat.cpp : Defines t ...

  4. 【BZOJ1010】玩具装箱

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  5. 『重构--改善既有代码的设计』读书笔记----Inline Method

    加入间接层确实是可以带来便利,但过多的间接层有时候会让我自己都觉得有点恐怖,有些时候,语句本身已经够清晰的同时就没必要再嵌一个函数来调用了,这样只会适得其反.比如 void test() { if ( ...

  6. jquery利用event.which方法获取键盘输入值的代码

    jquery利用event.which方法获取键盘输入值的代码,需要的朋友可以参考下. 实例 显示按了哪个键: $("input").keydown(function(event) ...

  7. log4net编译后命名空间找不到的问题

    log4net编译后命名空间找不到的问题问题:工程A添加dll引用后,可以在代码中引入log4net的命名空间.工程B引用A.A能编译成功,B不能编译成功,提示找不到命名空间. 解决: 点击项目属性- ...

  8. select 下拉菜单Option对象使用add(elements,index)方法动态添加

    原生js 的add函数为下拉菜单增加选项 1.object.add(oElement [, iIndex]) index 可选参数:指定元素放置所在的索引号,整形值.如果没有指定值,将添加到集合的最后 ...

  9. javascript获取对象宽度和高度

    标签元素的宽高值获取//绝对宽度Obj.offsetWidth//绝对高度Obj.offsetHeight 以下是获取窗口对象的宽高值.clientHeight   获取对象的高度,不计算任何边距.边 ...

  10. 002-C语言概览

    C语言 关键字: 32个关键字,全是小写 auto double int struct break else long switch case enum register typedef char e ...