Power Stations

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2164    Accepted Submission(s): 626
Special Judge

Problem Description
There
are N towns in our country, and some of them are connected by
electricity cables. It is known that every town owns a power station.
When a town’s power station begins to work, it will provide electric
power for this town and the neighboring towns which are connected by
cables directly to this town. However, there are some strange bugs in
the electric system –One town can only receive electric power from no
more than one power station, otherwise the cables will be burned out for
overload.

The power stations cannot work all the time. For each
station there is an available time range. For example, the power station
located on Town 1 may be available from the third day to the fifth day,
while the power station on Town 2 may be available from the first day
to the forth day. You can choose a sub-range of the available range as
the working time for each station. Note that you can only choose one
sub-range for each available range, that is, once the station stops
working, you cannot restart it again. Of course, it is possible not to
use any of them.

Now you are given all the information about the
cable connection between the towns, and all the power stations’
available time. You need to find out a schedule that every town will get
the electricity supply for next D days, one and only one supplier for
one town at any time.

 
Input
There
are several test cases. The first line of each test case contains three
integers, N, M and D (1 <= N <= 60, 1 <= M <= 150, 1 <= D
<= 5), indicating the number of towns is N, the number of cables is
M, and you should plan for the next D days.

Each of the next M
lines contains two integers a, b (1 <= a, b <= N), which means
that Town a and Town b are connected directly. Then N lines followed,
each contains two numbers si and ei, (1 <= si <= ei <= D)
indicating that the available time of Town i’s power station is from the
si-th day to the ei-th day (inclusive).

 
Output
For
each test case, if the plan exists, output N lines. The i-th line
should contain two integers ui and vi, indicating that Town i’s power
station should work from the ui-th day to vi-day (inclusive). If you
didn’t use this power station at all, set ui = vi = 0.

If the plan doesn’t exist, output one line contains “No solution” instead.

Note that the answer may not be unique. Any correct answers will be OK.

Output a blank line after each case.

 
Sample Input
3 3 5
1 2
2 3
3 1
1 5
1 5
1 5

4 4 5
1 2
2 3
3 4
4 1
1 5
1 5
1 5
1 5
 
Sample Output
 
1 5
0 0
0 0

 
No solution
 
  就是没看题导致WA1发。
 #include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxn=;
const int maxnode=;
int s[maxn],t[maxn],belong[maxn],ans[maxn];
struct DLX{
int L[maxnode],R[maxnode],U[maxnode],D[maxnode];
int cnt,Row[maxnode],Col[maxnode],C[maxn],H[maxn];
void Init(int n,int m){
for(int i=;i<=m;i++){
L[i]=i-;R[i]=i+;
U[i]=D[i]=i;C[i]=;
}
cnt=m;L[]=m;R[m]=;
for(int i=;i<=n;i++)H[i]=;
} void Link(int r,int c){
Row[++cnt]=r;C[Col[cnt]=c]+=; U[cnt]=c;D[cnt]=D[c];U[D[c]]=cnt;D[c]=cnt; if(!H[r])H[r]=L[cnt]=R[cnt]=cnt;
else R[cnt]=R[H[r]],L[cnt]=H[r],L[R[cnt]]=cnt,R[L[cnt]]=cnt;
} void Delete(int c){
L[R[c]]=L[c];R[L[c]]=R[c];
for(int i=D[c];i!=c;i=D[i])
for(int j=R[i];j!=i;j=R[j])
--C[Col[j]],U[D[j]]=U[j],D[U[j]]=D[j];
} void Resume(int c){
L[R[c]]=c;R[L[c]]=c;
for(int i=U[c];i!=c;i=U[i])
for(int j=L[i];j!=i;j=L[j])
++C[Col[j]],U[D[j]]=j,D[U[j]]=j;
} bool Solve(){
if(!R[])return true;
int p=R[];
for(int i=R[p];i;i=R[i])
if(C[p]>C[i])
p=i; Delete(p);
for(int i=D[p];i!=p;i=D[i]){
if(ans[belong[Row[i]]])continue;
for(int j=R[i];j!=i;j=R[j])
Delete(Col[j]); ans[belong[Row[i]]]=Row[i];
if(Solve())
return true;
ans[belong[Row[i]]]=;
for(int j=L[i];j!=i;j=L[j])
Resume(Col[j]);
}
Resume(p);
return false;
}
}dlx; int L[maxn],R[maxn];
bool G[maxn][maxn]; int main(){
int a,b,N,M,D,tot;
while(scanf("%d%d%d",&N,&M,&D)!=EOF){
memset(G,,sizeof(G));
while(M--){
scanf("%d%d",&a,&b);
G[a][b]=true;
G[b][a]=true;
} tot=;
for(int i=;i<=N;i++){
scanf("%d%d",&s[i],&t[i]);
tot+=(t[i]-s[i]+)*(t[i]-s[i]+)/;
G[i][i]=true;
} dlx.Init(tot,N*D);
memset(ans,,sizeof(ans));
for(int x=,p=;x<=N;x++)
for(int l=s[x];l<=t[x];l++)
for(int r=l;r<=t[x];r++){
++p;L[p]=l;R[p]=r;belong[p]=x;
for(int j=l;j<=r;j++)
for(int y=;y<=N;y++)
if(G[x][y])dlx.Link(p,N*(j-)+y);
}
if(dlx.Solve()){
for(int i=;i<=N;i++)
printf("%d %d\n",L[ans[i]],R[ans[i]]);
}
else
printf("No solution\n");
printf("\n");
}
return ;
}

搜索(DLX):HDU 3663 Power Stations的更多相关文章

  1. [DLX精确覆盖] hdu 3663 Power Stations

    题意: 给你n.m.d,代表有n个城市.m条城市之间的关系,每一个城市要在日后d天内都有电. 对于每一个城市,都有一个发电站,每一个发电站能够在[a,b]的每一个连续子区间内发电. x城市发电了.他相 ...

  2. Power Stations HDU - 3663

    我为什么T了.... Power Stations Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Jav ...

  3. 【HDU 3663】 Power Stations

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=3663 [算法] 先建图,然后用Dancing Links求解精确覆盖,即可 [代码] #inclu ...

  4. HDU 6034---Balala Power!(搜索+贪心)

    题目链接 Problem Description Talented Mr.Tang has n strings consisting of only lower case characters. He ...

  5. hdu 3663 DLX

    思路:把每个点拆成(d+1)*n列,行数为可拆分区间数.对所有的有i号点拆分出来的行都要建一条该行到i列的边,那么就能确保有i号点拆出来的行只能选择一行. #include<set> #i ...

  6. 【HDOJ】Power Stations

    DLX.针对每个城市,每个城市可充电的区间构成一个plan.每个决策由N*D个时间及N个精确覆盖构成. /* 3663 */ #include <iostream> #include &l ...

  7. 搜索(DLX): POJ 3074 3076 Sudoku

    POJ 3074 : Description In the game of Sudoku, you are given a large 9 × 9 grid divided into smaller ...

  8. 搜索(DLX):HOJ 1017 - Exact cover

    1017 - Exact cover Time Limit: 15s Memory Limit: 128MB Special Judge Submissions: 6751 Solved: 3519 ...

  9. HDU 4318 Power transmission(最短路)

    http://acm.hdu.edu.cn/showproblem.php?pid=4318 题意: 给出运输路线,每条路线运输时都会损失一定百分比的量,给定起点.终点和初始运输量,问最后到达终点时最 ...

随机推荐

  1. js自定义方法名

    自定义方法名: <script language="javascript" type="text/javascript">window.onload ...

  2. ToString格式.

    C 货币 2.5.ToString("C") ¥2.50 D 十进制数 25.ToString("D5") 00025 E 科学型 25000.ToString ...

  3. Visual C#实现Windows信使服务

    现在有很多网络管理软件都具备网络上信息实时传送的功能,虽然有些网络通讯软件功能比较强大,有的软件不仅可以传送文本信息,还可以传送二进制文件等.但 它们都有一个无法克服的缺点,那就是分发比较困难,信息传 ...

  4. xcode7 icon图标设置

  5. 解决NSAttributedString与UILabel高度自适应计算问题

    两个类扩展方法: /** *  修改富文本的颜色 * *  @param str   要改变的string *  @param color 设置颜色 *  @param range 设置颜色的文字范围 ...

  6. UITapGestureRecognizer会屏蔽掉Button的点击事件( 转载)

    UITapGestureRecognis 前几天在做项目的时候,遇到这个一个问题,在一个视图也就是UIView上添加一个手势,然后又在这个View上添加一个UIButton,然后给按钮添加事件,运行项 ...

  7. 【算法】数组与矩阵问题——找到无序数组中最小的k个数

    /** * 找到无序数组中最小的k个数 时间复杂度O(Nlogk) * 过程: * 1.一直维护一个有k个数的大根堆,这个堆代表目前选出来的k个最小的数 * 在堆里的k个元素中堆顶的元素是最小的k个数 ...

  8. SGU 149. Computer Network

    时间限制:0.25s 空间限制:4M: 题意: 给出一颗n(n<=10000)个节点的树,和n-1条边的长度.求出这棵树每个节点到最远节点的距离: Solution: 对于一个节点,我们可以用D ...

  9. 最全Media 响应式 设置方法

    大家对于css3中media属性并不陌生,但是随着一些高视网膜的设备面世,很多情况对于media的不标准的用法也越来越多,我通过查找一些知识结合实践给总结出一些标准的设置的方法. CSS3 中的 Me ...

  10. 编码问题导致样式显示在IE中不正常

    今天在做项目的时候,遇到样式显示不正常的问题,结果是因为用系统自带的notepad编辑器编辑文件时,编码格式被更改了.我们需要在Notepad++中,将编码格式改成Encode inUTF8 with ...