Dividing
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 63980   Accepted: 16591

Description

Marsha and Bill own a collection of marbles. They want to split the collection among themselves so that both receive an equal share of the marbles. This would be easy if all the marbles had the same value, because then they could just split the collection in half. But unfortunately, some of the marbles are larger, or more beautiful than others. So, Marsha and Bill start by assigning a value, a natural number between one and six, to each marble. Now they want to divide the marbles so that each of them gets the same total value. Unfortunately, they realize that it might be impossible to divide the marbles in this way (even if the total value of all marbles is even). For example, if there are one marble of value 1, one of value 3 and two of value 4, then they cannot be split into sets of equal value. So, they ask you to write a program that checks whether there is a fair partition of the marbles.

Input

Each line in the input file describes one collection of marbles to be divided. The lines contain six non-negative integers n1 , . . . , n6 , where ni is the number of marbles of value i. So, the example from above would be described by the input-line "1 0 1 2 0 0". The maximum total number of marbles will be 20000.
The last line of the input file will be "0 0 0 0 0 0"; do not process this line.

Output

For each collection, output "Collection #k:", where k is the number of the test case, and then either "Can be divided." or "Can't be divided.".
Output a blank line after each test case.

Sample Input

1 0 1 2 0 0
1 0 0 0 1 1
0 0 0 0 0 0

Sample Output

Collection #1:
Can't be divided. Collection #2:
Can be divided.

Source

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std; int sum;
int num[7], dp[60000 + 60];
template<class T > inline T getMax(const T &a, const T &b)
{
return a > b ? a : b;
} void ZeroOnePack(int cost, int weight, int V)
{
for (int i = V; i >= cost; i--) {
dp[i] = getMax(dp[i], dp[i - cost] + weight);
}
} void CompletePack(int cost, int weight, int V)
{
for (int i = cost; i <= V; i++) {
dp[i] = getMax(dp[i], dp[i - cost] + weight);
}
} void MultiPack(int cost, int weight, int V, int amount)
{
if (cost * amount >= V) {
CompletePack(cost, weight, V);
return;
}
int k = 1;
while (k < amount) {
ZeroOnePack(cost * k, weight * k, V);
amount -= k;
k *= 2;
}
ZeroOnePack(cost * amount, weight * amount, V);
} int main()
{
int t = 1;
while (~scanf("%d", &num[1])) {
sum = num[1];
for (int i = 2; i <= 6; i++) {
scanf("%d", &num[i]);
sum += num[i] * i;
}
if (num[1] + num[2] + num[3] + num[4] + num[5] + num[6] == 0) break;
printf("Collection #%d:\n", t++);
if (sum % 2) {
puts("Can't be divided.\n");
continue;
}
sum >>= 1;
memset(dp, 0, sizeof(dp));
for (int i = 1; i <= 6; i++) {
MultiPack(i, i, sum, num[i]);
}
if (dp[sum] != sum) {
puts("Can't be divided.\n");
} else
puts("Can be divided.\n");
}
return 0;
}

  

POJ 1014 Dividing 多重背包的更多相关文章

  1. Hdu 1059 Dividing & Zoj 1149 & poj 1014 Dividing(多重背包)

    多重背包模板- #include <stdio.h> #include <string.h> int a[7]; int f[100005]; int v, k; void Z ...

  2. POJ 1014 Dividing(多重背包, 倍增优化)

    Q: 倍增优化后, 还是有重复的元素, 怎么办 A: 假定重复的元素比较少, 不用考虑 Description Marsha and Bill own a collection of marbles. ...

  3. POJ 1014 Dividing (多重可行性背包)

    题意 有分别价值为1,2,3,4,5,6的6种物品,输入6个数字,表示相应价值的物品的数量,问一下能不能将物品分成两份,是两份的总价值相等,其中一个物品不能切开,只能分给其中的某一方,当输入六个0是( ...

  4. POJ 1014 Dividing(多重背包+二进制优化)

    http://poj.org/problem?id=1014 题意:6个物品,每个物品都有其价值和数量,判断是否能价值平分. 思路: 多重背包.利用二进制来转化成0-1背包求解. #include&l ...

  5. POJ 1014 Dividing(多重背包)

    Dividing   Description Marsha and Bill own a collection of marbles. They want to split the collectio ...

  6. DFS(DP)---POJ 1014(Dividing)

    原题目:http://poj.org/problem?id=1014 题目大意: 有分别价值为1,2,3,4,5,6的6种物品,输入6个数字,表示相应价值的物品的数量,问一下能不能将物品分成两份,是两 ...

  7. hdu 1059 Dividing(多重背包优化)

    Dividing Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

  8. POJ 1742 Coins(多重背包, 单调队列)

    Description People in Silverland use coins.They have coins of value A1,A2,A3...An Silverland dollar. ...

  9. POJ 2392【多重背包】

    题意: k个块,给出每个块的高度hi,数量ci,不能超过的高度: 求这些块可以组成的最大高度一个. 思路: 大致可看这个题是一个背包,背包的承重是高度. 对于每个物品,有他的价值是高度,还有限定的数量 ...

随机推荐

  1. mao/reduce实现求平均值

    import java.io.*; import java.util.*; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io. ...

  2. HTTPS、SSL与数字证书介绍

    在互联网安全通信方式上,目前用的最多的就是https配合ssl和数字证书来保证传输和认证安全了.本文追本溯源围绕这个模式谈一谈. 名词解释 HTTPS:在HTTP(超文本传输协议)基础上提出的一种安全 ...

  3. windows下redis的安装配置和php扩展使用phpredis

    1. 首先安装先下载redis数据库     下载地址: http://code.google.com/p/servicestack/wiki/RedisWindowsDownload 目前是2.02 ...

  4. iOS性能优化中的离屏渲染

    GPU屏幕渲染有以下两种方式: On-Screen Rendering意为当前屏幕渲染,指的是GPU的渲染操作是在当前用于显示的屏幕缓冲区中进行. Off-Screen Rendering意为离屏渲染 ...

  5. 【转】Android应用开发allowBackup敏感信息泄露的一点反思

    转载:http://blog.csdn.net/yanbober/article/details/46417531 1 背景 其实这篇文章可能有些小题大作,但回过头想想还是很有必要的,有点阴沟里翻船的 ...

  6. adb概览及协议參考

    原文:https://github.com/android/platform_system_core/blob/master/adb/OVERVIEW.TXT) Implementation note ...

  7. IOPS QPS TPS

    杨奇龙: http://blog.itpub.net/22664653/viewspace-767265/ http://blog.itpub.net/22664653/viewspace-76726 ...

  8. qemu 的方式安装debian 模拟powerpc

    http://bbs.pediy.com/showthread.php?p=1424746http://www.ibm.com/developerworks/cn/linux/l-qemu/ 线总结下 ...

  9. &&与&

    if((2>1)&&(4>3))System.out.printf("两边都是true"); else   System.out.println(&qu ...

  10. 墙裂推荐 iOS 资源大全

    这是个精心编排的列表,它包含了优秀的 iOS 框架.库.教程.XCode 插件.组件等等. 这个列表分为以下几个部分:框架( Frameworks ).组件( Components ).测试( Tes ...