【POJ】2947 Widget Factory(高斯消元)
http://poj.org/problem?id=2947
各种逗啊。。还好1a了。。
题意我就不说了,百度一大把。
转换为mod的方程组,即
(x[1,1]*a[1])+(x[1,2]*a[2])+...+(x[1,n]*a[n])=x[1, n+1] (mod m)
(x[2,1]*a[1])+(x[2,2]*a[2])+...+(x[2,n]*a[n])=x[2, n+1] (mod m)
...
(x[n,1]*a[1])+(x[n,2]*a[2])+...+(x[n,n]*a[n])=x[n, n+1] (mod m)
没有mod就是裸的高斯消元。。。
我们来考虑怎么消元。
显然如果有方程1和方程2,他们都有相同系数不为0的元素y,那么我们消元只需要将他们的系数调成一样即可,即调成公倍数,那么因为mod意义下满足a=b(mod m), a*c=b*c(mod m),所以将两个方程左式和右式都乘上这个公倍数即可。
而回代麻烦一些,减完当前方程其它元素的对应值后,此时假设当前元素的系数为A[i][i],而值是A[i][n+1],那么因为有x*A[i][i]=A[i][n+1](mod m),我们可以用拓展欧几里得或者一直加m,知道出现成立(此时因为一定有解,所以一定找得到一个x使得等式成立)
那么得到的x就是答案。
做的时候注意n和m是方程数还是未知量的数就行了。。
#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
#define printarr1(a, b) for1(_, 1, b) cout << a[_] << '\t'; cout << endl
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const int N=305;
typedef int mtx[N][N];
string Dt[7]={"MON", "TUE", "WED", "THU", "FRI", "SAT", "SUN"}; int gauss(mtx A, int n, int m, int MD) {
int x=1, y=1, pos;
while(x<=n && y<=m) {
pos=x;
while(!A[pos][y] && pos<=n) ++pos;
if(A[pos][y]) {
for1(i, 1, m+1) swap(A[pos][i], A[x][i]);
for1(i, x+1, n) if(A[i][y]) {
int l=A[x][y], r=A[i][y];
for1(j, y, m+1) A[i][j]=((A[i][j]*l-A[x][j]*r)%MD+MD)%MD;
}
++x;
}
++y;
}
for1(i, x, n) if(A[i][m+1]) return -1;
if(x<=m) return m-x+1;
for3(i, m, 1) {
for1(j, i+1, m) if(A[i][j]) A[i][m+1]=((A[i][m+1]-(A[j][m+1]*A[i][j]))%MD+MD)%MD;
while(A[i][m+1]%A[i][i]!=0) A[i][m+1]+=MD; //这里可以用拓欧搞掉。。
A[i][m+1]=(A[i][m+1]/A[i][i])%MD;
}
return 0;
}
inline int get(string s) { return find(Dt, Dt+7, s)-Dt+1; }
int main() {
int n=getint(), m=getint(), t;
char s[2][5];
mtx a;
while(n|m) {
CC(a, 0);
for1(i, 1, m) {
read(t); scanf("%s%s", s[0], s[1]);
a[i][n+1]=(get(s[1])-get(s[0])+1+7)%7;
for1(j, 1, t) ++a[i][getint()];
for1(j, 1, n) a[i][j]%=7;
}
int ans=gauss(a, m, n, 7);
if(ans==-1) puts("Inconsistent data.");
else if(ans) puts("Multiple solutions.");
else {
for1(i, 1, n) if(a[i][n+1]<3) a[i][n+1]+=7;
for1(i, 1, n-1) printf("%d ", a[i][n+1]); printf("%d\n", a[n][n+1]);
}
n=getint(), m=getint();
}
return 0;
}
Description
The factory is currently in a state of complete chaos: recently, the factory has been bought by a new owner, and the new director has fired almost everyone. The new staff know almost nothing about building widgets, and it seems that no one remembers how many days are required to build each diofferent type of widget. This is very embarrassing when a client orders widgets and the factory cannot tell the client how many days are needed to produce the required goods. Fortunately, there are records that say for each widgeteer the date when he started working at the factory, the date when he was fired and what types of widgets he built. The problem is that the record does not say the exact date of starting and leaving the job, only the day of the week. Nevertheless, even this information might be helpful in certain cases: for example, if a widgeteer started working on a Tuesday, built a Type 41 widget, and was fired on a Friday,then we know that it takes 4 days to build a Type 41 widget. Your task is to figure out from these records (if possible) the number of days that are required to build the different types of widgets.
Input
4 WED SUN
13 18 1 13
Note that the widgeteers work 7 days a week, and they were working on every day between their first and last day at the factory (if you like weekends and holidays, then do not become a widgeteer!).
The input is terminated by a test case with n = m = 0 .
Output
Sample Input
2 3
2 MON THU
1 2
3 MON FRI
1 1 2
3 MON SUN
1 2 2
10 2
1 MON TUE
3
1 MON WED
3
0 0
Sample Output
8 3
Inconsistent data.
Hint
Source
【POJ】2947 Widget Factory(高斯消元)的更多相关文章
- Poj 2947 widget factory (高斯消元解同模方程)
题目连接: http://poj.org/problem?id=2947 题目大意: 有n种类型的零件,m个工人,每个零件的加工时间是[3,9],每个工人在一个特定的时间段内可以生产k个零件(可以相同 ...
- POJ 2947 2947 Widget Factory 高斯消元
给出组件的数量n,给出记录的数量m(n就是变元数量,m是方程数量).每一个记录代表一个方程,求每个组件的生产天数. 高斯消元即可 #include <cstdio> #include &l ...
- POJ 2947 Widget Factory(高斯消元)
Description The widget factory produces several different kinds of widgets. Each widget is carefully ...
- POJ 2947-Widget Factory(高斯消元解同余方程式)
题目地址:id=2947">POJ 2947 题意:N种物品.M条记录,接写来M行,每行有K.Start,End,表述从星期Start到星期End,做了K件物品.接下来的K个数为物品的 ...
- POJ2947Widget Factory(高斯消元解同模方程)
http://poj.org/problem?id=2947 题目大意:有n 种装饰物,m 个已知条件,每个已知条件的描述如下:p start enda1,a2......ap (1<=ai&l ...
- poj 2947 Widget Factory
Widget Factory 题意:有n件装饰品,有m组信息.(1 <= n ,m<= 300)每组信息有开始的星期和结束的星期(是在mod 7范围内的)并且还包括num种装饰品的种类(1 ...
- POJ 1830 开关问题 高斯消元,自由变量个数
http://poj.org/problem?id=1830 如果开关s1操作一次,则会有s1(记住自己也会变).和s1连接的开关都会做一次操作. 那么设矩阵a[i][j]表示按下了开关j,开关i会被 ...
- A - The Water Bowls POJ - 3185 (bfs||高斯消元)
题目链接:https://vjudge.net/contest/276374#problem/A 题目大意:给你20个杯子,每一次操作,假设当前是对第i个位置进行操作,那么第i个位置,第i+1个位置, ...
- POJ 1166 The Clocks 高斯消元 + exgcd(纯属瞎搞)
依据题意可构造出方程组.方程组的每一个方程格式均为:C1*x1 + C2*x2 + ...... + C9*x9 = sum + 4*ki; 高斯消元构造上三角矩阵,以最后一个一行为例: C*x9 = ...
- POJ 2065 SETI(高斯消元)
题目链接:http://poj.org/problem?id=2065 题意:给出一个字符串S[1,n],字母a-z代表1到26,*代表0.我们用数组C[i]表示S[i]经过该变换得到的数字.给出一个 ...
随机推荐
- iOS开发自定义试图切换
CATransition *transition = [CATransition animation]; transition.duration = 1.0f; transition.timingFu ...
- iOS-开发将文本复制到剪切板
下面方法可以将文本复制到剪切板 UIPasteboard *pboard = [UIPasteboard generalPasteboard]; pboard.string = @"邀请码& ...
- 团队组队&灰化肥挥发会发黑
1. 队伍展示 (1. 队名: 灰化肥挥发会发黑 (2. 队员风采 苏叶潇(队长) 201521123114 与众不同,擅长软件测试,对编程望而却步,希望成为测试人员. 宣言:不求最好,只求更好. 李 ...
- 认识简单的C
- 【Docker 命令】- ps命令
docker ps : 列出容器 语法 docker ps [OPTIONS] OPTIONS说明: -a:显示所有的容器,包括未运行的. -f:根据条件过滤显示的内容. --format :指定返回 ...
- phpmyadmin打开空白
本地phpstudy环境,打开 phpmyadmin,登陆之后,显示空白页面. 解决办法:切换为 低版本的php版本,正常登陆.
- DEDE去掉会员登录及注册验证码的方法
1.登录打开member/index_do.php 删除245-250行,即: if(strtolower($vdcode)!=$svali || $svali=='') { ResetVdValue ...
- bzoj4332[JSOI2012]分零食
一下午被这题的精度续掉了...首先可以找出一个多项式的等比数列的形式,然后类似poj的Matrix Series,不断倍增就可以了.用复数点值表示进行多次的多项式运算会刷刷地炸精度...应当用int存 ...
- [洛谷P3878][TJOI2010]分金币
题目大意:把$n(n\leqslant30)$个数分成两组,两组个数最多相差$1$,求出两组元素差的绝对值最小使多少 题解:模拟退火 卡点:$\exp$中的两个数相减写反,导致$\exp(x)$中的$ ...
- [洛谷P3833][SHOI2012]魔法树
题目大意:给一棵树,路径加,子树求和 题解:树剖 卡点:无 C++ Code: #include <cstdio> #include <iostream> #define ma ...