【BZOJ1975】【SDOI2010】魔法猪学院 [A*搜索]
魔法猪学院
Time Limit: 10 Sec Memory Limit: 64 MB
[Submit][Status][Discuss]
Description
iPig在假期来到了传说中的魔法猪学院,开始为期两个月的魔法猪训练。
经过了一周理论知识和一周基本魔法的学习之后,iPig对猪世界的世界本原有了很多的了解:众所周知,世界是由元素构成的;元素与元素之间可以互相转换;能量守恒……。
iPig 今天就在进行一个麻烦的测验。
iPig 在之前的学习中已经知道了很多种元素,并学会了可以转化这些元素的魔法,每种魔法需要消耗 iPig 一定的能量。
作为 PKU 的顶尖学猪,让 iPig 用最少的能量完成从一种元素转换到另一种元素……等等,iPig 的魔法导猪可没这么笨!
这一次,他给 iPig 带来了很多 1 号元素的样本,要求 iPig 使用学习过的魔法将它们一个个转化为 N 号元素,为了增加难度,要求每份样本的转换过程都不相同。
这个看似困难的任务实际上对 iPig 并没有挑战性,因为,他有坚实的后盾……现在的你呀!
注意,两个元素之间的转化可能有多种魔法,转化是单向的。
转化的过程中,可以转化到一个元素(包括开始元素)多次,但是一但转化到目标元素,则一份样本的转化过程结束。
iPig 的总能量是有限的,所以最多能够转换的样本数一定是一个有限数。具体请参看样例。
Input
Output
Sample Input
1 2 1.5
2 1 1.5
1 3 3
2 3 1.5
3 4 1.5
1 4 1.5
Sample Output
HINT
占总分不小于 10% 的数据满足 N <= 6,M<=15。
占总分不小于 20% 的数据满足 N <= 100,M<=300,E<=100且E和所有的ei均为整数(可以直接作为整型数字读入)。
所有数据满足 2 <= N <= 5000,1 <= M <= 200000,1<=E<=107,1<=ei<=E,E和所有的ei为实数。
Main idea
询问第一个满足1~k短路的和>E的k。
Solution
求k短路,直接运用A*搜索即可,把T->每个点的最短路当做估价即可。
Code
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<queue>
using namespace std;
typedef long long s64; const int ONE = ;
const int POI = ;
const double INF = 1e18; int n,m;
int S,T;
double dist[POI],w[ONE],E;
bool vis[POI];
int next[ONE],first[POI],go[ONE],tot;
int Ans; struct point
{
int x,y; double z;
}a[ONE]; struct power
{
int x; double real;
bool operator <(const power &a) const
{
return a.real + dist[a.x] < real + dist[x];
}
}; inline int get()
{
int res=,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} void Add(int u,int v,double z)
{
next[++tot]=first[u]; first[u]=tot; go[tot]=v; w[tot]=z;
} void SPFA(int x)
{
queue <int> q;
q.push(x);
for(int i=S;i<=T;i++) dist[i] = INF;
vis[x] = ; dist[x] = ;
while(!q.empty())
{
int u = q.front(); q.pop();
for(int e=first[u];e;e=next[e])
{
int v = go[e];
if(dist[v] > dist[u] + w[e])
{
dist[v] = dist[u] + w[e];
if(!vis[v]) vis[v] = , q.push(v);
}
}
vis[u] = ;
}
} void Astar()
{
priority_queue <power> q;
q.push( (power){S, } );
while(!q.empty())
{
power u = q.top(); q.pop();
if(u.x == T) {E -= u.real; if(E < ) return; Ans++;}
if(u.real + dist[u.x] > E) continue;
for(int e=first[u.x]; e; e=next[e])
q.push( (power){go[e], u.real+w[e]} ); }
} int main()
{
n=get(); m=get(); scanf("%lf",&E);
S=, T=n;
for(int i=;i<=m;i++)
{
a[i].x=get(); a[i].y=get(); scanf("%lf",&a[i].z);
Add(a[i].y, a[i].x, a[i].z);
}
SPFA(T); memset(first,,sizeof(first)); tot=;
for(int i=;i<=m;i++) Add(a[i].x,a[i].y,a[i].z); Astar(); printf("%d",Ans);
}
【BZOJ1975】【SDOI2010】魔法猪学院 [A*搜索]的更多相关文章
- [BZOJ1975][SDOI2010]魔法猪学院(k短路,A*)
1975: [Sdoi2010]魔法猪学院 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 2748 Solved: 883[Submit][Statu ...
- bzoj1975: [Sdoi2010]魔法猪学院【k短路&A*算法】
1975: [Sdoi2010]魔法猪学院 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 2446 Solved: 770[Submit][Statu ...
- BZOJ1975 [Sdoi2010]魔法猪学院
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- BZOJ1975[Sdoi2010]魔法猪学院——可持久化可并堆+最短路树
题目描述 iPig在假期来到了传说中的魔法猪学院,开始为期两个月的魔法猪训练.经过了一周理论知识和一周基本魔法的学习之后,iPig对猪世界的世界本原有了很多的了解:众所周知,世界是由元素构成的:元素与 ...
- 洛谷P2483 Bzoj1975 [SDOI2010]魔法猪学院
题目描述 iPig在假期来到了传说中的魔法猪学院,开始为期两个月的魔法猪训练.经过了一周理论知识和一周基本魔法的学习之后,iPig对猪世界的世界本原有了很多的了解:众所周知,世界是由元素构成的:元素与 ...
- 【k短路&A*算法】BZOJ1975: [Sdoi2010]魔法猪学院
Description 找出1~k短路的长度. Solution k短路的求解要用到A*算法 A*算法的启发式函数f(n)=g(n)+h(n) g(n)是状态空间中搜索到n所花的实际代价 h(n) ...
- BZOJ1975 [Sdoi2010]魔法猪学院 k短路
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1975 题意概括 给出一个无向图,让你走不同的路径,从1到n,路径长度之和不超过E,求最大路径条数. ...
- BZOJ1975 SDOI2010魔法猪学院(启发式搜索+最短路+堆)
对反图跑最短路求出每个点到终点的最短路径,令其为估价函数大力A*,第k次到达某个点即是找到了到达该点的非严格第k短路,因为估价函数总是不大于实际值.bzoj可能需要手写堆.正解是可持久化可并堆,至今是 ...
- BZOJ1975 SDOI2010魔法猪学院
就是个A*,具体原理可以参考VANE的博文. 正解要手写堆,会被卡常,也许哪天我筋搭错了写一回吧. #include<bits/stdc++.h> #define r register u ...
- 【BZOJ1975】[Sdoi2010]魔法猪学院 A*
[BZOJ1975][Sdoi2010]魔法猪学院 Description iPig在假期来到了传说中的魔法猪学院,开始为期两个月的魔法猪训练.经过了一周理论知识和一周基本魔法的学习之后,iPig对猪 ...
随机推荐
- LintCode-112.删除排序链表中的重复元素
删除排序链表中的重复元素 给定一个排序链表,删除所有重复的元素每个元素只留下一个. 样例 给出 1->1->2->null,返回 1->2->null 给出 1-> ...
- Spring Boot(七)扩展分析
前面的章节在分析SpringBoot启动过程中,我们发现SpringBoot使用Spring框架提供的SpringFactoriesLoader这个类,实现检索META-INF/spring.fact ...
- Python ZKPython 安装
1.由于python客户端依赖c的客户端所以要先安装c版本的客户端cd zookeeper-3.4.5/src/c./configuremake make install 2.下载python扩展包, ...
- MAC搭建 PHP 环境
安装homebrew homebrew是mac下非常好用的包管理器,会自动安装相关的依赖包,将你从繁琐的软件依赖安装中解放出来. 安装homebrew也非常简单,只要在终端中输入11: 1 ruby ...
- CentOS 挂载(U盘NTFS格式,新硬盘,增加交换分区,扩展根分区等)
1.挂载fat或者fat32分区的U盘 如果是用VM安装的linux,在vm里挂载U盘有两个前提: 第一,主机里的service要启动: 第二,U盘是连接到虚拟机,而不是主机,需要确认这点: 2.使用 ...
- BZOJ4259:残缺的字符串——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4259 很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串A和B,其中A串长度 ...
- 洛谷 P3952 时间复杂度 解题报告
P3952 时间复杂度 题目描述 小明正在学习一种新的编程语言A++,刚学会循环语句的他激动地写了好多程序并 给出了他自己算出的时间复杂度,可他的编程老师实在不想一个一个检查小明的程序, 于是你的机会 ...
- NOIP2009 codevs1173 洛谷P1073 最优贸易
Description: 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分为双向通 ...
- contOS镜像快速加载到本地虚拟机软件
无需任何配置,只要两步: 1.首先打开 虚拟机软件VMware 2.然后打开镜像目录,找到后缀名为 .vmx 的文件,双击,即可. 会自动 挂载好,如下图:
- solr单元测试
package com.taotao.rest.solr; import java.io.IOException; import org.apache.solr.client.solrj.SolrQu ...