一、定义

二叉树在图论中是这样定义的:二叉树是一个连通的无环图,并且每一个顶点的度不大于3。有根二叉树还要满足根结点的度不大于2。有了根结点之后,每个顶点定义了唯一的父结点,和最多2个子结点。然而,没有足够的信息来区分左结点和右结点。如果不考虑连通性,允许图中有多个连通分量,这样的结构叫做森林。

二、基本概念

二叉树是递归定义的,其结点有左右子树之分,逻辑上二叉树有五种基本形态:
(1)空二叉树——如图(a);

(2)只有一个根结点的二叉树——如图(b);

(3)只有左子树——如图(c);
(4)只有右子树——如图(d);
(5)完全二叉树——如图(e)。
注意:尽管二叉树与树有许多相似之处,但二叉树不是树的特殊情形。[1] 

三、类型

(1)完全二叉树——若设二叉树的高度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第h层有叶子结点,并且叶子结点都是从左到右依次排布,这就是完全二叉树
(2)满二叉树——除了叶结点外每一个结点都有左右子叶且叶子结点都处在最底层的二叉树。
(3)平衡二叉树——平衡二叉树又被称为AVL树(区别于AVL算法),它是一棵二叉排序树,且具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。[2] 

四、相关术语

树的结点:包含一个数据元素及若干指向子树的分支;
孩子结点:结点的子树的根称为该结点的孩子;
双亲结点:B 结点是A 结点的孩子,则A结点是B 结点的双亲;
兄弟结点:同一双亲的孩子结点; 堂兄结点:同一层上结点;
祖先结点: 从根到该结点的所经分支上的所有结点子孙结点:以某结点为根的子树中任一结点都称为该结点的子孙
结点层:根结点的层定义为1;根的孩子为第二层结点,依此类推;
树的深度:树中最大的结点层
结点的度:结点子树的个数
树的度: 树中最大的结点度。
叶子结点:也叫终端结点,是度为 0 的结点;
分枝结点:度不为0的结点;
有序树:子树有序的树,如:家族树;
无序树:不考虑子树的顺序;[3]
五、代码实现
    //  main.c

    //  C语言-二叉树

    //

    //  Created by rimi on 2017/5/24.

    //  Copyright © 2017年 rimi. All rights reserved.

   #include <stdio.h>

   #include <stdlib.h>
struct TreeNode { char data; struct TreeNode * left; struct TreeNode * right; };
// 创建树 struct TreeNode * createTree(); // 先序遍历 void preTraverse(struct TreeNode * root); // 中序遍历 void centerTraverse(struct TreeNode * root); // 后序遍历 void backTraverse(struct TreeNode * root);
int main(int argc, const char * argv[]) { // preTraverse(createTree()); centerTraverse(createTree()); // backTraverse(createTree()); return ; } // 创建树 struct TreeNode * createTree(){
struct TreeNode * pa = (struct TreeNode *)malloc(sizeof(struct TreeNode)); struct TreeNode * pb = (struct TreeNode *)malloc(sizeof(struct TreeNode)); struct TreeNode * pc = (struct TreeNode *)malloc(sizeof(struct TreeNode)); struct TreeNode * pd = (struct TreeNode *)malloc(sizeof(struct TreeNode)); struct TreeNode * pe = (struct TreeNode *)malloc(sizeof(struct TreeNode)); struct TreeNode * pf = (struct TreeNode *)malloc(sizeof(struct TreeNode)); struct TreeNode * pg = (struct TreeNode *)malloc(sizeof(struct TreeNode)); pa->data = 'A'; pb->data = 'B'; pc->data = 'C'; pd->data = 'D'; pe->data = 'E'; pf->data = 'F'; pg->data = 'G'; pa->left = pb;
pa->right = pc; pb->left = pd;
pb->right = NULL; pc->left = pe;
pc->right = pf; pd->left = NULL; pd->right = pg; pe->left = NULL; pe->right = NULL; pf->left = NULL; pf->right = NULL; pg->left = NULL; pg->right = NULL;
return pa; } // 先序遍历 void preTraverse(struct TreeNode * root){ if (root != NULL) { printf("%c\n", root->data); preTraverse(root->left); preTraverse(root->right); } } // 中序遍历 void centerTraverse(struct TreeNode * root){ if(root !=NULL) { centerTraverse(root ->left);
printf("%c \n",root ->data); centerTraverse(root->right); } }
// 后序遍历 void backTraverse(struct TreeNode * root){ if(root !=NULL){ backTraverse(root ->left); backTraverse(root ->right); printf("%c \n",root ->data); }
}

C语言数据库-二叉树的更多相关文章

  1. C语言数据库编程

    ----摘自个人C语言数据库项目报告 3.4逻辑结构的SQL语句实现 创建基本表: 3.4-1建立商品表: create table goods(goods_id int primary key,go ...

  2. C语言实现二叉树-02版

    ---恢复内容开始--- 昨天,提交完我们的二叉树项目后,今天早上项目经理早早给我打电话: 他说,小伙子干的不错.但是为什么你上面的insert是recusive的呢? 你难道不知道万一数据量大啦!那 ...

  3. C语言实现二叉树-利用二叉树统计单词数目

    昨天刚参加了腾讯2015年在线模拟考: 四道大题的第一题就是单词统计程序的设计思想: 为了记住这一天,我打算今天通过代码实现一下: 我将用到的核心数据结构是二叉树: (要是想了解简单二叉树的实现,可以 ...

  4. Atitit.跨语言数据库db  api兼容性 jdbc odbc ado oledb 增强方案

    Atitit.跨语言数据库db  api兼容性 jdbc odbc ado oledb 增强方案 1. 跨语言db api兼容性..1 2. 目前访问数据库的接口很多.比较常用的jdbc odbc 以 ...

  5. C语言实现二叉树

    二叉树的重要性就不用多说啦: 我以前也学习过,但是一直没有总结: 网上找到的例子,要么是理论一大堆,然后是伪代码实现: 要么是复杂的代码,没有什么解释: 最终,还是靠FQ找到一些好的文章,参考地址我会 ...

  6. C语言实现二叉树的基本操作

    二叉树是一种非常重要的数据结构.本文总结了二叉树的常见操作:二叉树的构建,查找,删除,二叉树的遍历(包括前序遍历.中序遍历.后序遍历.层次遍历),二叉搜索树的构造等. 1. 二叉树的构建 二叉树的基本 ...

  7. R语言︱ 数据库SQL-R连接与SQL语句执行(RODBC、sqldf包)

    要学的东西太多,无笔记不能学~~ 欢迎关注公众号,一起分享学习笔记,记录每一颗"贝壳"~ --------------------------- 数据库是极其重要的R语言数据导入源 ...

  8. C语言描述二叉树的实现及操作(链表实现)

    概述     二叉树为每个节点最多有两个儿子节点(左儿子节点和右儿子节点)的树. 前序遍历:根结点 ---> 左子树 ---> 右子树. 中序遍历:左子树---> 根结点 ---&g ...

  9. 使用go语言数据库

    1.下载并导入数据库驱动包(注意配置环境变量.数据库.go.以及ENV) 这里选择了Go-MySQL-Driver这个实现.地址是:https://github.com/go-sql-driver/m ...

随机推荐

  1. Unicode,UTF-32,UTF-16,UTF-8到底是啥关系?

    编码的目的,就是给抽象的字符赋予一个数值,好在计算机里面表示.常见的ASCII使用8bit给字符编码,但是实际只使用了7bit,最高位没有使用,因此,只能表示128个字符:ISO-8859-1(也叫L ...

  2. PHP 将一个字符串部分字符用$re替代隐藏

    <?php/** * 将一个字符串部分字符用$re替代隐藏 * @param string $string 待处理的字符串 * @param int $start 规定在字符串的何处开始, * ...

  3. Alpha 冲刺4

    队名:日不落战队 安琪(队长) 今天完成的任务 组织第四次站立式会议. 完成40%草稿箱前端界面. 明天的计划 剩下的60%草稿箱前端界面. 如果还有时间,尝试去调用数据. 还剩下的任务 回收站前端界 ...

  4. 《Debian标准教程》摘录2则

    1.克隆Debian系统 如果使用的Debian系统只有使用apt安装的软件包,可以使用下面的脚本来安装一个完全一样的新系统. #在源主机上 dpkg --get-selections > se ...

  5. PAT 甲级 1038 Recover the Smallest Number

    https://pintia.cn/problem-sets/994805342720868352/problems/994805449625288704 Given a collection of ...

  6. union查询

     select id, uid, money, FROM_UNIXTIME(created) as created, type FROM  (  #type=1是  cjw_finance_bonus ...

  7. PHP中如何使用Redis接管文件存储Session详解

    https://www.jb51.net/article/151580.htm 前言 php默认使用文件存储session,如果并发量大,效率会非常低.而redis对高并发的支持非常好,可以利用red ...

  8. DELPHI BOOKMARK使用

    关于书签(BookMark)操作:       书签操作主要用于在表中快速地定位记录指针,在应用程序中常常要保存记录指针所在的位置,在进行其他处理之后,希望能快速地返回到先前指针所在的位置,此时,使用 ...

  9. 反向传播算法 Backpropagation Algorithm

    假设我们有一个固定样本集,它包含 个样例.我们可以用批量梯度下降法来求解神经网络.具体来讲,对于单个样例(x,y),其代价函数为:这是一个(二分之一的)方差代价函数.给定一个包含 个样例的数据集,我们 ...

  10. 【bzoj4278】[ONTAK2015]Tasowanie 贪心+后缀数组

    题目描述 给定两个数字串A和B,通过将A和B进行二路归并得到一个新的数字串T,请找到字典序最小的T. 输入 第一行包含一个正整数n(1<=n<=200000),表示A串的长度. 第二行包含 ...