在计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_entropy_with_logits,那么它到底是怎么做的呢?

首先明确一点,loss是代价值,也就是我们要最小化的值

tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None)

除去name参数用以指定该操作的name,与方法有关的一共两个参数

第一个参数logits:就是神经网络最后一层的输出,如果有batch的话,它的大小就是[batchsize,num_classes],单样本的话,大小就是num_classes

第二个参数labels:实际的标签,大小同上

 

具体的执行流程大概分为两步:

第一步是先对网络最后一层的输出做一个softmax,这一步通常是求取输出属于某一类的概率,对于单样本而言,输出就是一个num_classes大小的向量([Y1,Y2,Y3...]其中Y1,Y2,Y3...分别代表了是属于该类的概率)

softmax的公式是:

至于为什么是用的这个公式?这里不介绍了,涉及到比较多的理论证明

 

第二步是softmax的输出向量[Y1,Y2,Y3...]和样本的实际标签做一个交叉熵,公式如下:


其中指代实际的标签中第i个的值(用mnist数据举例,如果是3,那么标签是[0,0,0,1,0,0,0,0,0,0],除了第4个值为1,其他全为0)

就是softmax的输出向量[Y1,Y2,Y3...]中,第i个元素的值

显而易见,预测越准确,结果的值越小(别忘了前面还有负号),最后求一个平均,得到我们想要的loss

注意!!!这个函数的返回值并不是一个数,而是一个向量,如果要求交叉熵,我们要再做一步tf.reduce_sum操作,就是对向量里面所有元素求和,最后才得到,如果求loss,则要做一步tf.reduce_mean操作,对向量求均值!

最后上代码:

import tensorflow as tf  

#our NN's output
logits=tf.constant([[1.0,2.0,3.0],[1.0,2.0,3.0],[1.0,2.0,3.0]])
#step1:do softmax
y=tf.nn.softmax(logits)
#true label
y_=tf.constant([[0.0,0.0,1.0],[0.0,0.0,1.0],[0.0,0.0,1.0]])
#step2:do cross_entropy
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
#do cross_entropy just one step
cross_entropy2=tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(logits, y_))#dont forget tf.reduce_sum()!! with tf.Session() as sess:
softmax=sess.run(y)
c_e = sess.run(cross_entropy)
c_e2 = sess.run(cross_entropy2)
print("step1:softmax result=")
print(softmax)
print("step2:cross_entropy result=")
print(c_e)
print("Function(softmax_cross_entropy_with_logits) result=")
print(c_e2)

输出结果是:

step1:softmax result=
[[ 0.09003057 0.24472848 0.66524094]
[ 0.09003057 0.24472848 0.66524094]
[ 0.09003057 0.24472848 0.66524094]]
step2:cross_entropy result=
1.22282
Function(softmax_cross_entropy_with_logits) result=
1.2228

最后大家可以试试e^1/(e^1+e^2+e^3)是不是0.09003057,发现确实一样!!这也证明了我们的输出是符合公式逻辑的

[TensorFlow] tf.nn.softmax_cross_entropy_with_logits的用法的更多相关文章

  1. 【TensorFlow】tf.nn.softmax_cross_entropy_with_logits的用法

    在计算loss的时候,最常见的一句话就是 tf.nn.softmax_cross_entropy_with_logits ,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化 ...

  2. tf.nn.softmax_cross_entropy_with_logits的用法

    http://blog.csdn.net/mao_xiao_feng/article/details/53382790 计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_e ...

  3. 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)

    1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')  # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...

  4. tf.nn.softmax & tf.nn.reduce_sum & tf.nn.softmax_cross_entropy_with_logits

    tf.nn.softmax softmax是神经网络的最后一层将实数空间映射到概率空间的常用方法,公式如下: \[ softmax(x)_i=\frac{exp(x_i)}{\sum_jexp(x_j ...

  5. tf.nn.softmax_cross_entropy_with_logits()函数的使用方法

    import tensorflow as tf labels = [[0.2,0.3,0.5], [0.1,0.6,0.3]]logits = [[2,0.5,1], [0.1,1,3]] a=tf. ...

  6. 1、求loss:tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None))

    1.求loss: tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None)) 第一个参数log ...

  7. tf.nn.softmax_cross_entropy_with_logits 分类

    tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None) 参数: logits:就是神经网络最后一层的输出,如果有batch ...

  8. 关于 tf.nn.softmax_cross_entropy_with_logits 及 tf.clip_by_value

    In order to train our model, we need to define what it means for the model to be good. Well, actuall ...

  9. tf.nn.embedding_lookup()的用法

    函数: tf.nn.embedding_lookup( params, ids, partition_strategy='mod', name=None, validate_indices=True, ...

随机推荐

  1. jdbc preparedstatement 调用存储过程的问题

    preparedstatement   是可以执行正常的存储过程 executeQuery() 正常执行 在实际开发中遇到一种问题当 preparedstatement.setMaxRows 设置了这 ...

  2. Freemarker自定义方法

    在项目中有一个需求,每个物品有一个guid,存在数据库中,而在页面上需要显示一个对应的业务数据值,暂且叫做serverId,serverId是通过guid移位计算得来.serverId只需要显示,后台 ...

  3. Android CoordinatorLayout 入门介绍

    Android CoordinatorLayout 入门介绍 CoordinatorLayout View 知道如何表现 在 2015 年的 I/O 开发者大会上,Google 介绍了一个新的 And ...

  4. (译)Getting Started——1.1.1 Start Developing IOS Today(开始IOS开发)

    安装       本课程对于创建运行在iPad.iPhone和iPod触摸屏上的应用来说,是一个完美的起点.该向导的四个板块可以作为构建你第一个应用的简单向导——内容包括了你需要使用的工具,主要的理念 ...

  5. Effective Java学习笔记--创建和销毁对象

    创建和销毁对象 一.静态工厂方法代替构造器 静态工厂方法的优缺点 优点: 1.可以自定义名称(可以将功能表述的更加清晰) 2.不必每次调用都创建新的对象(同一对象重复使用) 3.返回的类型可以是原返回 ...

  6. IE下使用jquery失效的问题(转载)

    1,然后各种调试,最后发现:把ie把关了,再打开$.get().会调用,再第二次调用的用的时候发现又不行了.于是我推断是ie缓存的问题,把ie缓存清除后,果然可以了.但是客户不可能知道清理缓存.所以只 ...

  7. python 脚本撞库国内“某榴”账号

    其实日常生活中我们的用户名和密码就那么几个,所以这给撞库带来了可能,本文主要给出python脚本撞库的一点粗浅代码.这里只讨论技术本生,代码中某榴的地址也已经改掉,避免被管理员误解禁言等发生,谢谢大家 ...

  8. 剖析top命令显示的VIRT RES SHR值

    http://yalung929.blog.163.com/blog/static/203898225201212981731971/ http://www.fuzhijie.me/?p=741 引  ...

  9. 响应式网页设计:rem、em设置网页字体大小自适应

    「rem」是指根元素(root element,html)的字体大小,好开心的是,从遥远的 IE6 到版本帝 Chrome 他们都约好了,根元素默认的 font-size 都是 16px.这样一个新的 ...

  10. WebAPI发布IIS报错问题

    1.看IIS中处理程序映射中有没有注册:ExtensionlessUrlHandler-Integrated-4.0 没有的话需要在[运行]中注册:aspnet_regiis.exe 2.配置文件中要 ...