[TensorFlow] tf.nn.softmax_cross_entropy_with_logits的用法
在计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_entropy_with_logits,那么它到底是怎么做的呢?
首先明确一点,loss是代价值,也就是我们要最小化的值
tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None)
除去name参数用以指定该操作的name,与方法有关的一共两个参数:
第一个参数logits:就是神经网络最后一层的输出,如果有batch的话,它的大小就是[batchsize,num_classes],单样本的话,大小就是
num_classes
第二个参数labels:实际的标签,大小同上
具体的执行流程大概分为两步:
第一步是先对网络最后一层的输出做一个softmax,这一步通常是求取输出属于某一类的概率,对于单样本而言,输出就是一个
大小的向量([Y1,Y2,Y3...]其中Y1,Y2,Y3...分别代表了是属于该类的概率)num_classes
softmax的公式是:
至于为什么是用的这个公式?这里不介绍了,涉及到比较多的理论证明
第二步是
softmax的输出向量[Y1,Y2,Y3...]和样本的实际标签做一个交叉熵,公式如下:
其中指代实际的标签中第i个的值(用mnist数据举例,如果是3,那么标签是[0,0,0,1,0,0,0,0,0,0],除了第4个值为1,其他全为0)
就是
中,第i个元素的值softmax的输出向量[Y1,Y2,Y3...]
显而易见,预测越准确,结果的值越小(别忘了前面还有负号),最后求一个平均,得到我们想要的loss
注意!!!这个函数的返回值并不是一个数,而是一个向量,如果要求交叉熵,我们要再做一步tf.reduce_sum操作,就是对向量里面所有元素求和,最后才得到,如果求loss,则要做一步
tf.reduce_mean操作,对向量求均值!
最后上代码:
import tensorflow as tf #our NN's output
logits=tf.constant([[1.0,2.0,3.0],[1.0,2.0,3.0],[1.0,2.0,3.0]])
#step1:do softmax
y=tf.nn.softmax(logits)
#true label
y_=tf.constant([[0.0,0.0,1.0],[0.0,0.0,1.0],[0.0,0.0,1.0]])
#step2:do cross_entropy
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
#do cross_entropy just one step
cross_entropy2=tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(logits, y_))#dont forget tf.reduce_sum()!! with tf.Session() as sess:
softmax=sess.run(y)
c_e = sess.run(cross_entropy)
c_e2 = sess.run(cross_entropy2)
print("step1:softmax result=")
print(softmax)
print("step2:cross_entropy result=")
print(c_e)
print("Function(softmax_cross_entropy_with_logits) result=")
print(c_e2)
输出结果是:
step1:softmax result=
[[ 0.09003057 0.24472848 0.66524094]
[ 0.09003057 0.24472848 0.66524094]
[ 0.09003057 0.24472848 0.66524094]]
step2:cross_entropy result=
1.22282
Function(softmax_cross_entropy_with_logits) result=
1.2228
最后大家可以试试e^1/(e^1+e^2+e^3)是不是0.09003057,发现确实一样!!这也证明了我们的输出是符合公式逻辑的
[TensorFlow] tf.nn.softmax_cross_entropy_with_logits的用法的更多相关文章
- 【TensorFlow】tf.nn.softmax_cross_entropy_with_logits的用法
在计算loss的时候,最常见的一句话就是 tf.nn.softmax_cross_entropy_with_logits ,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化 ...
- tf.nn.softmax_cross_entropy_with_logits的用法
http://blog.csdn.net/mao_xiao_feng/article/details/53382790 计算loss的时候,最常见的一句话就是tf.nn.softmax_cross_e ...
- 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)
1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME') # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...
- tf.nn.softmax & tf.nn.reduce_sum & tf.nn.softmax_cross_entropy_with_logits
tf.nn.softmax softmax是神经网络的最后一层将实数空间映射到概率空间的常用方法,公式如下: \[ softmax(x)_i=\frac{exp(x_i)}{\sum_jexp(x_j ...
- tf.nn.softmax_cross_entropy_with_logits()函数的使用方法
import tensorflow as tf labels = [[0.2,0.3,0.5], [0.1,0.6,0.3]]logits = [[2,0.5,1], [0.1,1,3]] a=tf. ...
- 1、求loss:tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None))
1.求loss: tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None)) 第一个参数log ...
- tf.nn.softmax_cross_entropy_with_logits 分类
tf.nn.softmax_cross_entropy_with_logits(logits, labels, name=None) 参数: logits:就是神经网络最后一层的输出,如果有batch ...
- 关于 tf.nn.softmax_cross_entropy_with_logits 及 tf.clip_by_value
In order to train our model, we need to define what it means for the model to be good. Well, actuall ...
- tf.nn.embedding_lookup()的用法
函数: tf.nn.embedding_lookup( params, ids, partition_strategy='mod', name=None, validate_indices=True, ...
随机推荐
- EMQ进行HttpApi登录问题
今天进行EMQ http api调用的时候遇到一个问题,一直弹出登录验证框 在官网资料中也找不到相关的接口,如下图: 以前也经常看到这种登录,不过我这里没有用程序去调用过这样类似的接口. 后来我想到经 ...
- Ubuntu 12.04 server 如何安装 OpenERP 7(转)
不经意的一次看到OpenERP这个开源ERP,就被其丰富的功能,简洁的画面,熟悉的语言所吸引.迫不及待的多方查询资料,自己架设一个测试环境来进行了解.以下为测试安装时候的步骤说明,以备查询,并供有需要 ...
- IP代理软件
IP代理软件 IP代理软件就是通过第三方网络协议传输数据的一种加密软件:跟VPN,代理服务器原理一样,是一种特殊的网络服务,允许一个网络终端(一般为客户端)通 过这个服务与另一个网络终端(一般为服务器 ...
- 【shell】tar命令详解
tar [-cxtzjvfpPN] 文件与目录 ....参数:-c :建立一个压缩文件的参数指令(create 的意思):-x :解开一个压缩文件的参数指令!-t :查看 tarfile 里面的文件! ...
- java打印和重写toString
class Person { private String name; public Person(String name) { this.name=name; } } public classPri ...
- JavaScript中数组常用方法的总结
JavaScript中数组Array常用的方法总结 标签(空格分隔): JavaScript ECMAScript数组给我们提供了许多常用的方法,便于我们对数组进行操作,下面,就来总结一下这些方法. ...
- 11 jsp脚本调用java代码
大多数情况下, jsp 文档的大部分由静态文本(html)构成, 为处理该页面而创建的 servlet 只是将它们原封不动的传递给客户端, 原封不动的传送给客户端有两个小例外: 1. 如果想传送 &l ...
- ASP.NET中JSON对时间进行序列化和反序列化
JSON格式不直接支持日期和时间.DateTime值显示为“/Date(0+0800)/”形式的JSON字符串,其中第一个数字是GMT时区中自1970年1月1 日午夜以来按正常时间(非夏令时)经过的毫 ...
- XmLHttpRequst下载Excel
//得到浏览器版本 myJqHelp.getBrowser = function () { var ua = window.navigator.userAgent; var isIE = !!wind ...
- bootstrap随笔点击增加
ht5: <div class="form-group"><label class="col-sm-2 control-label&qu ...