Bridge Across Islands
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 7202   Accepted: 2113   Special Judge

Description

Thousands of thousands years ago there was a small kingdom located in the middle of the Pacific Ocean. The territory of the kingdom consists two separated islands. Due to the impact of the ocean current, the shapes of both the islands became convex polygons. The king of the kingdom wanted to establish a bridge to connect the two islands. To minimize the cost, the king asked you, the bishop, to find the minimal distance between the boundaries of the two islands.

Input

The input consists of several test cases.
Each test case begins with two integers NM. (3 ≤ NM ≤ 10000)
Each of the next N lines contains a pair of coordinates, which describes the position of a vertex in one convex polygon.
Each of the next M lines contains a pair of coordinates, which describes the position of a vertex in the other convex polygon.
A line with N = M = 0 indicates the end of input.
The coordinates are within the range [-10000, 10000].

Output

For each test case output the minimal distance. An error within 0.001 is acceptable.

Sample Input

4 4
0.00000 0.00000
0.00000 1.00000
1.00000 1.00000
1.00000 0.00000
2.00000 0.00000
2.00000 1.00000
3.00000 1.00000
3.00000 0.00000
0 0

Sample Output

1.00000

Source

 
 
 
 
 
经典算法。
 
#include <stdio.h>
#include <algorithm>
#include <iostream>
#include <string.h>
#include <math.h>
using namespace std; const double eps = 1e-;
int sgn(double x)
{
if(fabs(x) < eps)return ;
if(x < )return -;
else return ;
}
struct Point
{
double x,y;
Point(double _x = 0.0,double _y = 0.0)
{
x = _x;
y = _y;
}
Point operator -(const Point &b)const
{
return Point(x - b.x, y - b.y);
}
double operator ^(const Point &b)const
{
return x*b.y - y*b.x;
}
double operator *(const Point &b)const
{
return x*b.x + y*b.y;
}
void input()
{
scanf("%lf%lf",&x,&y);
}
};
struct Line
{
Point s,e;
Line(){}
Line(Point _s,Point _e)
{
s = _s;
e = _e;
}
};
double dist(Point a,Point b)
{
return sqrt((a-b)*(a-b));
}
Point NearestPointToLineSeg(Point P,Line L)
{
Point result;
double t = ((P-L.s)*(L.e-L.s))/((L.e-L.s)*(L.e-L.s));
if(t >= && t <= )
{
result.x = L.s.x + (L.e.x - L.s.x)*t;
result.y = L.s.y + (L.e.y - L.s.y)*t;
}
else
{
if(dist(P,L.s) < dist(P,L.e))
result = L.s;
else result = L.e;
}
return result;
}
/*
* 求凸包,Graham算法
* 点的编号0~n-1
* 返回凸包结果Stack[0~top-1]为凸包的编号
*/
const int MAXN = ;
Point list[MAXN];
int Stack[MAXN],top;
//相对于list[0]的极角排序
bool _cmp(Point p1,Point p2)
{
double tmp = (p1-list[])^(p2-list[]);
if(sgn(tmp) > )return true;
else if(sgn(tmp) == && sgn(dist(p1,list[]) - dist(p2,list[])) <= )
return true;
else return false;
}
void Graham(int n)
{
Point p0;
int k = ;
p0 = list[];
//找最下边的一个点
for(int i = ;i < n;i++)
{
if( (p0.y > list[i].y) || (p0.y == list[i].y && p0.x > list[i].x) )
{
p0 = list[i];
k = i;
}
}
swap(list[k],list[]);
sort(list+,list+n,_cmp);
if(n == )
{
top = ;
Stack[] = ;
return;
}
if(n == )
{
top = ;
Stack[] = ;
Stack[] = ;
return ;
}
Stack[] = ;
Stack[] = ;
top = ;
for(int i = ;i < n;i++)
{
while(top > && sgn((list[Stack[top-]]-list[Stack[top-]])^(list[i]-list[Stack[top-]])) <= )
top--;
Stack[top++] = i;
}
}
//点p0到线段p1p2的距离
double pointtoseg(Point p0,Point p1,Point p2)
{
return dist(p0,NearestPointToLineSeg(p0,Line(p1,p2)));
}
//平行线段p0p1和p2p3的距离
double dispallseg(Point p0,Point p1,Point p2,Point p3)
{
double ans1 = min(pointtoseg(p0,p2,p3),pointtoseg(p1,p2,p3));
double ans2 = min(pointtoseg(p2,p0,p1),pointtoseg(p3,p0,p1));
return min(ans1,ans2);
}
//得到向量a1a2和b1b2的位置关系
double Get_angle(Point a1,Point a2,Point b1,Point b2)
{
Point t = b1 - ( b2 - a1 );
return (a2-a1)^(t-a1);
}
//旋转卡壳,求两个凸包的最小距离
double rotating_calipers(Point p[],int np,Point q[],int nq)
{
int sp = , sq = ;
for(int i = ;i < np;i++)
if(sgn(p[i].y - p[sp].y) < )
sp = i;
for(int i = ;i < nq;i++)
if(sgn(q[i].y - q[sq].y) > )
sq = i;
double tmp;
double ans = 1e99;
for(int i = ;i < np;i++)
{
while(sgn(tmp = Get_angle(p[sp],p[(sp+)%np],q[sq],q[(sq+)%nq])) < )
sq = (sq + )%nq;
if(sgn(tmp) == )
ans = min(ans,dispallseg(p[sp],p[(sp+)%np],q[sq],q[(sq+)%nq]));
else ans = min(ans,pointtoseg(q[sq],p[sp],p[(sp+)%np]));
sp = (sp+)%np;
}
return ans;
} double solve(Point p[],int n,Point q[],int m)
{
return min(rotating_calipers(p,n,q,m),rotating_calipers(q,m,p,n));
}
Point p[MAXN],q[MAXN];
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)==)
{
if(n == && m == )break;
for(int i = ;i < n;i++)
list[i].input();
Graham(n);
n = top;
for(int i = ;i < n;i++)
p[i] = list[Stack[i]];
for(int i = ;i < m;i++)
list[i].input();
Graham(m);
m = top;
for(int i = ;i < m;i++)
q[i] = list[Stack[i]];
printf("%.5lf\n",solve(p,n,q,m));
}
return ;
}
 
 
 
 
 

POJ 3608 Bridge Across Islands(旋转卡壳,两凸包最短距离)的更多相关文章

  1. POJ 3608 Bridge Across Islands [旋转卡壳]

    Bridge Across Islands Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10455   Accepted: ...

  2. ●POJ 3608 Bridge Across Islands

    题链: http://poj.org/problem?id=3608 题解: 计算几何,求两个凸包间的最小距离,旋转卡壳 两个凸包间的距离,无非下面三种情况: 所以可以基于旋转卡壳的思想,去求最小距离 ...

  3. POJ 2187 Beauty Contest【旋转卡壳求凸包直径】

    链接: http://poj.org/problem?id=2187 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...

  4. POJ 3608 Bridge Across Islands(计算几何の旋转卡壳)

    Description Thousands of thousands years ago there was a small kingdom located in the middle of the ...

  5. POJ 3608 Bridge Across Islands (旋转卡壳)

    [题目链接] http://poj.org/problem?id=3608 [题目大意] 求出两个凸包之间的最短距离 [题解] 我们先找到一个凸包的上顶点和一个凸包的下定点,以这两个点为起点向下一个点 ...

  6. POJ 3608 Bridge Across Islands --凸包间距离,旋转卡壳

    题意: 给你两个凸包,求其最短距离. 解法: POJ 我真的是弄不懂了,也不说一声点就是按顺时针给出的,不用调整点顺序. 还是说数据水了,没出乱给点或给逆时针点的数据呢..我直接默认顺时针给的点居然A ...

  7. POJ - 3608 Bridge Across Islands【旋转卡壳】及一些有趣现象

    给两个凸包,求这两个凸包间最短距离 旋转卡壳的基础题 因为是初学旋转卡壳,所以找了别人的代码进行观摩..然而发现很有意思的现象 比如说这个代码(只截取了关键部分) double solve(Point ...

  8. poj 3608 Bridge Across Islands 两凸包间最近距离

    /** 旋转卡壳,, **/ #include <iostream> #include <algorithm> #include <cmath> #include ...

  9. poj 3608 Bridge Across Islands

    题目:计算两个不相交凸多边形间的最小距离. 分析:计算几何.凸包.旋转卡壳.分别求出凸包,利用旋转卡壳求出对踵点对,枚举距离即可. 注意:1.利用向量法判断旋转,而不是计算角度:避免精度问题和TLE. ...

随机推荐

  1. sicily 1063. Who's the Boss

    Time Limit: 1sec    Memory Limit:32MB  Description Several surveys indicate that the taller you are, ...

  2. sicily 1009. Mersenne Composite N

    Description One of the world-wide cooperative computing tasks is the "Grand Internet Mersenne P ...

  3. C基础 内存统一入口

    引言  - malloc 引述 C标准中堆上内存入口就只有 malloc, calloc, realloc . 内存回收口是 free. 常见的一种写法是 struct person * per = ...

  4. JDBC数据源连接池(2)---C3P0

    我们接着<JDBC数据源连接池(1)---DBCP>继续介绍数据源连接池. 首先,在Web项目的WebContent--->WEB-INF--->lib文件夹中添加C3P0的j ...

  5. JDBC原生数据库连接

    我们在开发JavaWeb项目时,常会需要连接数据库.我们以MySQL数据库为例,IDE工具为eclipse,讲述数据库连接与基本操作. 第一步,我们在Web项目的WebContent中建一个简单的前端 ...

  6. jenkins构建触发器定时任务Build periodically和Poll SCM【转载】

    转至博客:上海-悠悠 前言 跑自动化用例每次用手工点击jenkins出发自动化用例太麻烦了,我们希望能每天固定时间跑,这样就不用管了,坐等收测试报告结果就行. 一.定时构建语法 * * * * * ( ...

  7. hdu 1041(递推,大数)

    Computer Transformation Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/ ...

  8. 字符串Hash相关

    其实也并不是什么特别难的算法,但是我个人实在是不太喜欢字符串之类的东西(字符串神马的真的是麻烦),于是一直拖着不想看,然后模板题之类的也懒得做. Hash的思想其实也没什么复杂的,就是给定一系列字符串 ...

  9. curator管理es索引

    安装curator------------------rpm --import https://packages.elastic.co/GPG-KEY-elasticsearch vi /etc/yu ...

  10. 【数据结构】 最小生成树(二)——kruskal算法

    上一期说完了什么是最小生成树,这一期咱们来介绍求最小生成树的算法:kruskal算法,适用于稀疏图,也就是同样个数的节点,边越少就越快,到了数据结构与算法这个阶段了,做题靠的就是速度快,时间复杂度小. ...