HDU 4635 Strongly connected (2013多校4 1004 有向图的强连通分量)
Strongly connected
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 53 Accepted Submission(s): 15
A simple directed graph is a directed graph having no multiple edges or graph loops.
A strongly connected digraph is a directed graph in which it is possible to reach any node starting from any other node by traversing edges in the direction(s) in which they point.
Then T cases follow, each case starts of two numbers N and M, 1<=N<=100000, 1<=M<=100000, representing the number of nodes and the number of edges, then M lines follow. Each line contains two integers x and y, means that there is a edge from x to y.
If the original graph is strongly connected, just output -1.
3 3
1 2
2 3
3 1
3 3
1 2
2 3
1 3
6 6
1 2
2 3
3 1
4 5
5 6
6 4
Case 2: 1
Case 3: 15
Tarjan 缩点。
/*
* Author:kuangbin
* 1004.cpp
*/ #include <stdio.h>
#include <algorithm>
#include <string.h>
#include <iostream>
#include <map>
#include <vector>
#include <queue>
#include <set>
#include <string>
#include <math.h>
using namespace std;
/*
* Tarjan算法
* 复杂度O(N+M)
*/
const int MAXN = ;//点数
const int MAXM = ;//边数
struct Edge
{
int to,next;
}edge[MAXM];
int head[MAXN],tot;
int Low[MAXN],DFN[MAXN],Stack[MAXN],Belong[MAXN];//Belong数组的值是1~scc
int Index,top;
int scc;//强连通分量的个数
bool Instack[MAXN];
int num[MAXN];//各个强连通分量包含点的个数,数组编号1~scc
//num数组不一定需要,结合实际情况 void addedge(int u,int v)
{
edge[tot].to = v;edge[tot].next = head[u];head[u] = tot++;
}
void Tarjan(int u)
{
int v;
Low[u] = DFN[u] = ++Index;
Stack[top++] = u;
Instack[u] = true;
for(int i = head[u];i != -;i = edge[i].next)
{
v = edge[i].to;
if( !DFN[v] )
{
Tarjan(v);
if( Low[u] > Low[v] )Low[u] = Low[v];
}
else if(Instack[v] && Low[u] > DFN[v])
Low[u] = DFN[v];
}
if(Low[u] == DFN[u])
{
scc++;
do
{
v = Stack[--top];
Instack[v] = false;
Belong[v] = scc;
num[scc]++;
}
while( v != u);
}
}
void solve(int N)
{
memset(DFN,,sizeof(DFN));
memset(Instack,false,sizeof(Instack));
memset(num,,sizeof(num));
Index = scc = top = ;
for(int i = ;i <= N;i++)
if(!DFN[i])
Tarjan(i);
}
void init()
{
tot = ;
memset(head,-,sizeof(head));
}
int in[MAXN],out[MAXN];
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int T;
scanf("%d",&T);
int iCase = ;
int n,m;
int u,v;
while(T--)
{
iCase++;
init();
scanf("%d%d",&n,&m);
for(int i = ;i < m;i++)
{
scanf("%d%d",&u,&v);
addedge(u,v);
}
solve(n);
if(scc == )
{
printf("Case %d: -1\n",iCase);
continue;
}
for(int i = ;i <= scc;i++)
{
in[i] = ;
out[i] = ;
}
for(int u = ;u <= n;u++)
for(int i = head[u];i != -;i = edge[i].next)
{
int v = edge[i].to;
if(Belong[u]==Belong[v])continue;
out[Belong[u]]++;
in[Belong[v]]++;
}
long long sss = (long long)n*(n-) - m;
long long ans = ;
for(int i = ;i <= scc;i++)
{
if(in[i]== || out[i] == )
ans = max(ans,sss - (long long)num[i]*(n-num[i]));
}
printf("Case %d: %d\n",iCase,ans);
}
return ;
}
HDU 4635 Strongly connected (2013多校4 1004 有向图的强连通分量)的更多相关文章
- HDU 4699 Editor (2013多校10,1004题)
Editor Time Limit: 3000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Su ...
- HDU 4635 —— Strongly connected——————【 强连通、最多加多少边仍不强连通】
Strongly connected Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u ...
- HDU 4635 Strongly connected (Tarjan+一点数学分析)
Strongly connected Time Limit : 2000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other) ...
- HDU 4635 Strongly connected(强连通)经典
Strongly connected Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- hdu 4635 Strongly connected 强连通缩点
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4635 题意:给你一个n个点m条边的图,问在图不是强连通图的情况下,最多可以向图中添多少条边,若图为原来 ...
- HDU 4635 Strongly connected (强连通分量)
题意 给定一个N个点M条边的简单图,求最多能加几条边,使得这个图仍然不是一个强连通图. 思路 2013多校第四场1004题.和官方题解思路一样,就直接贴了~ 最终添加完边的图,肯定可以分成两个部X和Y ...
- hdu 4635 Strongly connected
http://acm.hdu.edu.cn/showproblem.php?pid=4635 我们把缩点后的新图(实际编码中可以不建新图 只是为了概念上好理解)中的每一个点都赋一个值 表示是由多少个点 ...
- hdu 4635 Strongly connected(强连通)
考强连通缩点,算模板题吧,比赛的时候又想多了,大概是不自信吧,才开始认真搞图论,把题目想复杂了. 题意就是给你任意图,保证是simple directed graph,问最多加多少条边能使图仍然是si ...
- HDU 4635 Strongly connected(强连通分量,变形)
题意:给出一个有向图(不一定连通),问最多可添加多少条边而该图仍然没有强连通. 思路: 强连通分量必须先求出,每个强连通分量包含有几个点也需要知道,每个点只会属于1个强连通分量. 在使图不强连通的前提 ...
随机推荐
- 手把手教你写Linux设备驱动---中断(三)--workqueue实现(基于友善之臂4412开发板) 【转】
转自:http://blog.csdn.net/morixinguan/article/details/69680909 上节,我们讲到如何来实现tasklet小任务机制 http://blog.cs ...
- 网络知识===wireshark抓包数据分析(一)
wireshark分析: 上图是我进行一个HTTP协议的下载,文件内容大概是1.7M左右. 抓包数据: https://files.cnblogs.com/files/botoo/wireshark% ...
- SQL语句获取时间的方法
1. 当前系统日期.时间select getdate() 2. dateadd 在向指定日期加上一段时间的基础上,返回新的 datetime 值例如:向日期加上2天select dateadd(day ...
- scrapy再学习与第二个实例
这周对于Scrapy进一步学习,知识比较零散,需要爬取的网站因为封禁策略账号还被封了/(ㄒoㄒ)/~~ 一.信息存储 1.log存储命令:scrapy crawl Test --logfile=tes ...
- visualvm监控远程机器上的Java程序
源文:http://hanwangkun.iteye.com/blog/1195526
- 关于Free的override不能省略的问题,切记,虚方法是可以被覆盖的方法。
- [PAT] 1142 Maximal Clique(25 分)
1142 Maximal Clique(25 分) A clique is a subset of vertices of an undirected graph such that every tw ...
- LeetCode解题报告—— 4Sum & Remove Nth Node From End of List & Generate Parentheses
1. 4Sum Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + ...
- python中的偏函数partial
Python的functools模块提供了很多有用的功能,其中一个就是偏函数(Partial function).要注意,这里的偏函数和数学意义上的偏函数不一样. 在介绍函数参数的时候,我们讲到,通过 ...
- 感受C#6.0新语法
作为一门专为程(yu)序(fa)员(tang)考虑的语言,感受一下来自微软的满满的恶意... 1. 字符串内联在之前的版本中,常用的格式化字符串: var s = String.Format(&quo ...