2、Flume1.7.0入门:安装、部署、及flume的案例
一、什么是Flume?
flume 作为 cloudera 开发的实时日志收集系统,受到了业界的认可与广泛应用。
flume的特点:
flume是一个分布式、可靠、和高可用的海量日志采集、聚合和传输的系统。支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(比如文本、HDFS、Hbase等)的能力 。
flume的数据流由事件(Event)贯穿始终。事件是Flume的基本数据单位,它携带日志数据(字节数组形式)并且携带有头信息,这些Event由Agent外部的Source生成,当Source捕获事件后会进行特定的格式化,然后Source会把事件推入(单个或多个)Channel中。你可以把Channel看作是一个缓冲区,它将保存事件直到Sink处理完该事件。Sink负责持久化日志或者把事件推向另一个Source。
flume的可靠性
当节点出现故障时,日志能够被传送到其他节点上而不会丢失。Flume提供了三种级别的可靠性保障,从强到弱依次分别为:end-to-end(收到数据agent首先将event写到磁盘上,当数据传送成功后,再删除;如果数据发送失败,可以重新发送。),Store on failure(这也是scribe采用的策略,当数据接收方crash时,将数据写到本地,待恢复后,继续发送),Besteffort(数据发送到接收方后,不会进行确认)。
flume的可恢复性:
还是靠Channel。推荐使用FileChannel,事件持久化在本地文件系统里(性能较差)。
flume的一些核心概念:
- Agent:使用JVM 运行Flume。每台机器运行一个agent,但是可以在一个agent中包含多个sources和sinks。
- Client:生产数据,运行在一个独立的线程。
- Source:从Client专门用来收集数据,传递给Channel,可以处理各种类型、各种格式的日志数据,包括avro、thrift、exec、jms、spooling directory、netcat、sequence generator、syslog、http、legacy、自定义。
- Sink:从Channel收集数据,运行在一个独立线程,sink组件是用于把数据发送到目的地的组件,目的地包括hdfs、logger、avro、thrift、ipc、file、null、Hbase、solr、自定义。
- Channel:连接 sources 和 sinks ,这个有点像一个队列,source组件把数据收集来以后,临时存放在channel中,即channel组件在agent中是专门用来存放临时数据的——对采集到的数据进行简单的缓存,可以存放在memory、jdbc、file等等。
- Events:可以是日志记录、 avro 对象等。
Agent的概念
Flume以agent为最小的独立运行单位。一个agent就是一个JVM,agent本身是一个Java进程,运行在日志收集节点—所谓日志收集节点就是服务器节点。
单agent由Source、Sink和Channel三大组件构成,类似生产者、仓库、消费者的架构.如下图:
Event的概念
flume的核心是把数据从数据源(source)收集过来,在将收集到的数据送到指定的目的地(sink)。为了保证输送的过程一定成功,在送到目的地(sink)之前,会先缓存数据(channel),待数据真正到达目的地(sink)后,flume在删除自己缓存的数据。
在整个数据的传输的过程中,流动的是event,即事务保证是在event级别进行的。那么什么是event呢?—–event将传输的数据进行封装,是flume传输数据的基本单位,如果是文本文件,通常是一行记录,event也是事务的基本单位。event从source,流向channel,再到sink,本身为一个字节数组,并可携带headers(头信息)信息。event代表着一个数据的最小完整单元,从外部数据源来,向外部的目的地去。
为了方便大家理解,给出一张event的数据流向图:
一个完整的event包括:event headers、event body、event信息(即文本文件中的单行记录),如下所以:
2017-03-29 14:00:58,227 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:95)] Event: { headers:{} body: 68 65 6C 6C 6F 20 77 6F 72 64 hello word }
其中event信息就是flume收集到的日记记录。
flume的运行机制
flume的核心就是一个agent,这个agent对外有两个进行交互的地方,一个是接受数据的输入——source,一个是数据的输出sink,sink负责将数据发送到外部指定的目的地。source接收到数据之后,将数据发送给channel,chanel作为一个数据缓冲区会临时存放这些数据,随后sink会将channel中的数据发送到指定的地方—-例如HDFS等,注意:只有在sink将channel中的数据成功发送出去之后,channel才会将临时数据进行删除,这种机制保证了数据传输的可靠性与安全性。
flume的广义用法
flume可以支持多级flume的agent,即flume可以前后相继,例如sink可以将数据写到下一个agent的source中,这样的话就可以连成串了,可以整体处理了。flume还支持扇入(fan-in)、扇出(fan-out)。所谓扇入就是source可以接受多个输入,所谓扇出就是sink可以将数据输出多个目的地destination中。
值得注意的是,Flume提供了大量内置的Source、Channel和Sink类型。不同类型的Source,Channel和Sink可以自由组合。组合方式基于用户设置的配置文件,非常灵活。比如:Channel可以把事件暂存在内存里,也可以持久化到本地硬盘上。Sink可以把日志写入HDFS, HBase,甚至是另外一个Source等等。Flume支持用户建立多级流,也就是说,多个agent可以协同工作,并且支持Fan-in、Fan-out、Contextual Routing、Backup Routes。如下图所示:
二、安装Flume
1、下载Flume
http://apache.mirrors.hoobly.com/flume/1.7.0/apache-flume-1.7.0-bin.tar.gz
2、安装Flume
1)将下载的flume包,解压到/opt目录中.
2)修改 flume-env.sh 配置文件,主要是JAVA_HOME变量设置
mbp:apache-flume-1.7.0-bin$ cp conf/flume-env.sh.template conf/flume-env.sh
mbp:apache-flume-1.7.0-bin$ vi conf/flume-env.sh
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# If this file is placed at FLUME_CONF_DIR/flume-env.sh, it will be sourced
# during Flume startup.
# Enviroment variables can be set here.
export JAVA_HOME=/Library/Java/JavaVirtualMachines/jdk1.8.0_111.jdk/Contents/Home
# Give Flume more memory and pre-allocate, enable remote monitoring via JMX
# export JAVA_OPTS="-Xms100m -Xmx2000m -Dcom.sun.management.jmxremote"
# Let Flume write raw event data and configuration information to its log files for debugging
# purposes. Enabling these flags is not recommended in production,
# as it may result in logging sensitive user information or encryption secrets.
# export JAVA_OPTS="$JAVA_OPTS -Dorg.apache.flume.log.rawdata=true -Dorg.apache.flume.log.printconfig=true "
# Note that the Flume conf directory is always included in the classpath.
#FLUME_CLASSPATH=""
3)验证是否安装成功
mbp:apache-flume-1.7.0-bin$ bin/flume-ng version
Flume 1.7.0
Source code repository: https://git-wip-us.apache.org/repos/asf/flume.git
Revision: 511d868555dd4d16e6ce4fedc72c2d1454546707
Compiled by bessbd on Wed Oct 12 20:51:10 CEST 2016
From source with checksum 0d21b3ffdc55a07e1d08875872c00523
mbp:apache-flume-1.7.0-bin$
出现上面的信息,表示安装成功了.
三、flume的案例
对于flume的原理其实很容易理解,我们更应该掌握flume的具体使用方法,flume提供了大量内置的Source、Channel和Sink类型。而且不同类型的Source、Channel和Sink可以自由组合—–组合方式基于用户设置的配置文件,非常灵活。比如:Channel可以把事件暂存在内存里,也可以持久化到本地硬盘上。Sink可以把日志写入HDFS, HBase,甚至是另外一个Source等等。下面我将用具体的案例详述flume的具体用法。
其实flume的用法很简单—-书写一个配置文件,在配置文件当中描述source、channel与sink的具体实现,而后运行一个agent实例,在运行agent实例的过程中会读取配置文件的内容,这样flume就会采集到数据。
配置文件的编写原则:
0)、案例1:Netcat
NetCat Source:监听一个指定的网络端口,即只要应用程序向这个端口里面写数据,这个source组件就可以获取到信息。
1>从整体上描述代理agent中sources、sinks、channels所涉及到的组件
# Name the components on this agent
a1.sources = r1
a1.sinks = k1
a1.channels = c1
2>详细描述agent中每一个source、sink与channel的具体实现:即在描述source的时候,需要指定source到底是什么类型的,即这个source是接受文件的、还是接受http的、还是接受thrift的;对于sink也是同理,需要指定结果是输出到HDFS中,还是Hbase中啊等等;对于channel需要指定是内存啊,还是数据库啊,还是文件啊等等。
# Describe configure the source
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = 44444
# Describe the sink
a1.sinks.k1.type = logger
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
3>通过channel将source与sink连接起来
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
启动agent的shell操作:
flume-ng agent -n a1 -c conf -f conf/example.file -Dflume.root.logger=DEBUG,console
参数说明:
-n 指定agent名称(与配置文件中代理的名字相同)
-c 指定flume中配置文件的目录
-f 指定配置文件
-Dflume.root.logger=DEBUG,console 设置日志等级
1)、案例1:Avro
Avro可以发送一个给定的文件给Flume,Avro 源使用AVRO RPC机制。
a)创建agent配置文件
mbp:apache-flume-1.7.0-bin$ vi conf/avro.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe configure the source
a1.sources.r1.type = avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = 4141
# Describe the sink
a1.sinks.k1.type = logger
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
b)启动flume agent a1
mbp:apache-flume-1.7.0-bin$ bin/flume-ng agent -n a1 -c conf -f conf/avro.conf -Dflume.root.logger=INFO,console
c)创建指定文件
mbp:apache-flume-1.7.0-bin$ echo "hello word" > log.00
d)使用avro-client发送文件
mbp:apache-flume-1.7.0-bin$ bin/flume-ng avro-client -c conf -H mbp -p 4141 -F log.00
e)在mbp的控制台,可以看到以下信息,注意最后一行:
2017-03-29 13:52:19,139 (lifecycleSupervisor-1-0) [INFO - org.apache.flume.node.PollingPropertiesFileConfigurationProvider.start(PollingPropertiesFileConfigurationProvider.java:62)] Configuration provider starting
.
.
.
2017-03-29 14:00:58,227 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:95)] Event: { headers:{} body: 68 65 6C 6C 6F 20 77 6F 72 64 hello word }
2)、案例2:Spool
监听一个指定的目录,即只要应用程序向这个指定的目录中添加新的文件,source组件就可以获取到该信息,并解析该文件的内容,然后写入到channle。写入完成后,标记该文件已完成或者删除该文件。
Spool监测配置的目录下新增的文件,并将文件中的数据读取出来。需要注意两点:
1) 拷贝到spool目录下的文件不可以再打开编辑。
2) spool目录下不可包含相应的子目录
a)创建agent配置文件
mbp:apache-flume-1.7.0-bin$ vi conf/spool.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = spooldir
a1.sources.r1.channels = c1
a1.sources.r1.spoolDir = /opt/apache-flume-1.7.0-bin/logs
a1.sources.r1.fileHeader = true
# Describe the sink
a1.sinks.k1.type = logger
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
b)启动flume agent a1
mbp:apache-flume-1.7.0-bin$ bin/flume-ng agent -n a1 -c conf -f conf/spool.conf -Dflume.root.logger=INFO,console
c)追加文件到/opt/apache-flume-1.7.0-bin/logs目录
mbp:apache-flume-1.7.0-bin$ echo "spool test1" > logs/spool_text.log
d)在mbp的控制台,可以看到以下相关信息:
2017-03-29 14:31:04,921 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:95)] Event: { headers:{file=/opt/apache-flume-1.7.0-bin/logs/spool_text.log} body: 73 70 6F 6F 6C 20 74 65 73 74 31 spool test1 }
3)、案例3:Exec
监听一个指定的命令,获取一条命令的结果作为它的数据源
常用的是tail -F file指令,即只要应用程序向日志(文件)里面写数据,source组件就可以获取到日志(文件)中最新的内容 。
EXEC执行一个给定的命令获得输出的源,如果要使用tail命令,必选使得file足够大才能看到输出内容
a)创建agent配置文件
mbp:apache-flume-1.7.0-bin$ vi conf/exec_tail.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.channels = c1
a1.sources.r1.command = tail -F /opt/apache-flume-1.7.0-bin/log_exec_tail
# Describe the sink
a1.sinks.k1.type = logger
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
b)启动flume agent a1
mbp:apache-flume-1.7.0-bin$ bin/flume-ng agent -n a1 -c conf -f conf/exec_tail.conf -Dflume.root.logger=INFO,console
c)生成足够多的内容在文件里
mbp:apache-flume-1.7.0-bin$ for i in {1..100};do echo "exec tail$i" >> /opt/apache-flume-1.7.0-bin/logs/log_exec_tail done
e)在mbp的控制台,可以看到以下信息:
2017-03-29 15:26:25,990 (lifecycleSupervisor-1-0) [INFO - org.apache.flume.node.PollingPropertiesFileConfigurationProvider.start(PollingPropertiesFileConfigurationProvider.java:62)] Configuration provider starting
.
.
.
2017-03-29 15:26:44,336 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:95)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 34 exec tail94 }
2017-03-29 15:26:44,336 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:95)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 35 exec tail95 }
2017-03-29 15:26:44,336 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:95)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 36 exec tail96 }
2017-03-29 15:26:44,336 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:95)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 37 exec tail97 }
2017-03-29 15:26:44,336 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:95)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 38 exec tail98 }
2017-03-29 15:26:44,337 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:95)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 39 39 exec tail99 }
2017-03-29 15:26:44,337 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:95)] Event: { headers:{} body: 65 78 65 63 20 74 61 69 6C 31 30 30 exec tail100 }
4)、案例4:Syslogtcp
Syslogtcp监听TCP的端口做为数据源
a)创建agent配置文件
mbp:apache-flume-1.7.0-bin$ vi conf/syslog_tcp.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = syslogtcp
a1.sources.r1.port = 5140
a1.sources.r1.host = localhost
a1.sources.r1.channels = c1
# Describe the sink
a1.sinks.k1.type = logger
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
b)启动flume agent a1
mbp:apache-flume-1.7.0-bin$ bin/flume-ng agent -n a1 -c conf -f conf/syslog_tcp.conf -Dflume.root.logger=INFO,console
c)测试产生syslog
mbp:apache-flume-1.7.0-bin$ echo "hello idoall.org syslog" | nc localhost 5140
d)在mbp的控制台,可以看到以下信息:
2017-03-29 15:33:43,305 (New I/O worker #1) [WARN - org.apache.flume.source.SyslogUtils.buildEvent(SyslogUtils.java:317)] Event created from Invalid Syslog data.
2017-03-29 15:33:46,303 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:95)] Event: { headers:{Severity=0, Facility=0, flume.syslog.status=Invalid} body: 68 65 6C 6C 6F 20 69 64 6F 61 6C 6C 2E 6F 72 67 hello idoall.org }
5)、案例5:JSONHandler
a)创建agent配置文件
mbp:apache-flume-1.7.0-bin$ vi conf/post_json.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = org.apache.flume.source.http.HTTPSource
a1.sources.r1.port = 8888
a1.sources.r1.channels = c1
# Describe the sink
a1.sinks.k1.type = logger
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
b)启动flume agent a1
mbp:apache-flume-1.7.0-bin$ bin/flume-ng agent -n a1 -c conf -f conf/post_json.conf -Dflume.root.logger=INFO,console
c)生成JSON 格式的POST request
curl -X POST -d '[{ "headers" :{"a" : "a1","b" : "b1"},"body" : "idoall.org_body"}]' http://localhost:8888
d)在mbp的控制台,可以看到以下信息:
2017-03-29 15:37:30,565 (lifecycleSupervisor-1-0) [INFO - org.mortbay.log.Slf4jLog.info(Slf4jLog.java:67)] jetty-6.1.26
2017-03-29 15:37:30,713 (lifecycleSupervisor-1-0) [INFO - org.mortbay.log.Slf4jLog.info(Slf4jLog.java:67)] Started SelectChannelConnector@0.0.0.0:8888
2017-03-29 15:37:30,713 (lifecycleSupervisor-1-0) [INFO - org.apache.flume.instrumentation.MonitoredCounterGroup.register(MonitoredCounterGroup.java:119)] Monitored counter group for type: SOURCE, name: r1: Successfully registered new MBean.
2017-03-29 15:37:30,713 (lifecycleSupervisor-1-0) [INFO - org.apache.flume.instrumentation.MonitoredCounterGroup.start(MonitoredCounterGroup.java:95)] Component type: SOURCE, name: r1 started
2017-03-29 15:38:00,451 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.LoggerSink.process(LoggerSink.java:95)] Event: { headers:{a=a1, b=b1} body: 69 64 6F 61 6C 6C 2E 6F 72 67 5F 62 6F 64 79 idoall.org_body }
总结Exec source:Exec source和Spooling Directory Source是两种常用的日志采集的方式,其中Exec source可以实现对日志的实时采集,Spooling Directory Source在对日志的实时采集上稍有欠缺,尽管Exec source可以实现对日志的实时采集,但是当Flume不运行或者指令执行出错时,Exec source将无法收集到日志数据,日志会出现丢失,从而无法保证收集日志的完整性。
6)、案例6:Avro Source
监听一个指定的Avro 端口,通过Avro 端口可以获取到Avro client发送过来的文件 。即只要应用程序通过Avro 端口发送文件,source组件就可以获取到该文件中的内容。 其中 Sink:hdfs Channel:file
(注:Avro和Thrift都是一些序列化的网络端口–通过这些网络端口可以接受或者发送信息,Avro可以发送一个给定的文件给Flume,Avro 源使用AVRO RPC机制)
Avro Source运行原理如下图:
flume配置文件的书写是相当灵活的—-不同类型的Source、Channel和Sink可以自由组合!
最后对上面用的几个flume source进行适当总结:
① NetCat Source:监听一个指定的网络端口,即只要应用程序向这个端口里面写数据,这个source组件
就可以获取到信息。
②Spooling Directory Source:监听一个指定的目录,即只要应用程序向这个指定的目录中添加新的文
件,source组件就可以获取到该信息,并解析该文件的内容,然后写入到channle。写入完成后,标记
该文件已完成或者删除该文件。
③Exec Source:监听一个指定的命令,获取一条命令的结果作为它的数据源
常用的是tail -F file指令,即只要应用程序向日志(文件)里面写数据,source组件就可以获取到日志(文件)中最新的内容 。
④Avro Source:监听一个指定的Avro 端口,通过Avro 端口可以获取到Avro client发送过来的文件 。即只要应用程序通过Avro 端口发送文件,source组件就可以获取到该文件中的内容。
7)、案例7:Hadoop sink
a)创建agent配置文件
mbp:apache-flume-1.7.0-bin$ vi conf/hdfs_sink.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = syslogtcp
a1.sources.r1.port = 5140
a1.sources.r1.host = localhost
a1.sources.r1.channels = c1
# Describe the sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.channel = c1
a1.sinks.k1.hdfs.path = hdfs://localhost:8020/user/flume/syslogtcp
a1.sinks.k1.hdfs.filePrefix = Syslog
a1.sinks.k1.hdfs.round = true
a1.sinks.k1.hdfs.roundValue = 10
a1.sinks.k1.hdfs.roundUnit = minute
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
b)启动flume agent a1
mbp:apache-flume-1.7.0-bin$ bin/flume-ng agent -n a1 -c conf -f conf/hdfs_sink.conf -Dflume.root.logger=INFO,console
c)测试产生syslog
mbp:apache-flume-1.7.0-bin$ echo "hello idoall flume -> hadoop testing one" | nc localhost 5140
d)在mbp的控制台,可以看到以下信息:
2017-03-29 19:10:14,820 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.HDFSSequenceFile.configure(HDFSSequenceFile.java:63)] writeFormat = Writable, UseRawLocalFileSystem = false
2017-03-29 19:10:14,834 (SinkRunner-PollingRunner-DefaultSinkProcessor) [INFO - org.apache.flume.sink.hdfs.BucketWriter.open(BucketWriter.java:231)] Creating hdfs://localhost:8020/user/flume/syslogtcp/Syslog.1490785814821.tmp
2017-03-29 19:10:44,861 (hdfs-k1-roll-timer-0) [INFO - org.apache.flume.sink.hdfs.BucketWriter.close(BucketWriter.java:357)] Closing hdfs://localhost:8020/user/flume/syslogtcp/Syslog.1490785814821.tmp
2017-03-29 19:10:44,880 (hdfs-k1-call-runner-9) [INFO - org.apache.flume.sink.hdfs.BucketWriter$8.call(BucketWriter.java:618)] Renaming hdfs://localhost:8020/user/flume/syslogtcp/Syslog.1490785814821.tmp to hdfs://localhost:8020/user/flume/syslogtcp/Syslog.1490785814821
2017-03-29 19:10:44,884 (hdfs-k1-roll-timer-0) [INFO - org.apache.flume.sink.hdfs.HDFSEventSink$1.run(HDFSEventSink.java:382)] Writer callback called.
e)在mbp上再打开一个窗口,去hadoop上检查文件是否生成
mbp:hadoop-2.7.3$ bin/hadoop fs -ls /user/flume/syslogtcp
Found 1 items
-rw-r--r-- 3 liudebin supergroup 175 2017-03-29 19:10 /user/flume/syslogtcp/Syslog.1490785779051
mbp:hadoop-2.7.3$ bin/hadoop fs -cat /user/flume/syslogtcp/Syslog.1490785779051
SEQ!org.apache.hadoop.io.LongWritable"org.apache.hadoop.io.BytesWritable?L????ˌ?ܞ ??[???(hello idoall flume -> hadoop testing one?????L????ˌ?ܞ ??
8)、案例8:File Roll Sink
a)创建agent配置文件
mbp:apache-flume-1.7.0-bin$ vi conf/file_roll.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = syslogtcp
a1.sources.r1.port = 5555
a1.sources.r1.host = localhost
a1.sources.r1.channels = c1
# Describe the sink
a1.sinks.k1.type = file_roll
a1.sinks.k1.sink.directory = /opt/apache-flume-1.7.0-bin/logs
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
b)启动flume agent a1
mbp:apache-flume-1.7.0-bin$ bin/flume-ng agent -n a1 -c conf -f conf/file_roll.conf -Dflume.root.logger=INFO,console
c)测试产生log
mbp:apache-flume-1.7.0-bin$ echo "hello idoall.org syslog" | nc localhost 5555
mbp:apache-flume-1.7.0-bin$ echo "hello idoall.org syslog 2" | nc localhost 5555
d)查看/home/hadoop/flume-1.5.0-bin/logs下是否生成文件,默认每30秒生成一个新文件
mbp:apache-flume-1.7.0-bin$ ls -l logs/
total 24
-rw-r--r-- 1 liudebin wheel 50 3 30 13:06 1490850370723-1
-rw-r--r-- 1 liudebin wheel 0 3 30 13:06 1490850370723-2
-rw-r--r-- 1 liudebin wheel 6429 3 29 14:06 flume.log.COMPLETED
mbp:apache-flume-1.7.0-bin$ cat logs/1490850370723-1 logs/1490850370723-2
hello idoall.org syslog
hello idoall.org syslog 2
9)、案例9:Replicating Channel Selector
Flume支持Fan out流从一个源到多个通道。有两种模式的Fan out,分别是复制和复用。在复制的情况下,流的事件被发送到所有的配置通道。在复用的情况下,事件被发送到可用的渠道中的一个子集。Fan out流需要指定源和Fan out通道的规则。
这次我们需要用到mbp1,mbp2两台机器
a)在mbp1创建replicating_Channel_Selector.conf配置文件
mbp1:apache-flume-1.7.0-bin$ vi conf/replicating_Channel_Selector.conf
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1 c2
# Describe/configure the source
a1.sources.r1.type = syslogtcp
a1.sources.r1.port = 5140
a1.sources.r1.host = localhost
a1.sources.r1.channels = c1 c2
a1.sources.r1.selector.type = replicating
# Describe the sink
a1.sinks.k1.type = avro
a1.sinks.k1.channel = c1
a1.sinks.k1.hostname = mbp1
a1.sinks.k1.port = 5555
a1.sinks.k2.type = avro
a1.sinks.k2.channel = c2
a1.sinks.k2.hostname = mbp2
a1.sinks.k2.port = 5555
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
a1.channels.c2.type = memory
a1.channels.c2.capacity = 1000
a1.channels.c2.transactionCapacity = 100
b)在mbp1创建replicating_Channel_Selector_avro.conf配置文件
mbp1:apache-flume-1.7.0-bin$ vi conf/replicating_Channel_Selector_avro.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = 5555
# Describe the sink
a1.sinks.k1.type = logger
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
c)在mbp1上将2个配置文件复制到mbp2上一份
mbp1:apache-flume-1.7.0-bin$ scp -r conf/replicating_Channel_Selector.conf vagrant@mbp2:/opt/apache-flume-1.7.0/conf/
mbp1:apache-flume-1.7.0-bin$ scp -r conf/replicating_Channel_Selector_avro.conf vagrant@mbp2:/opt/apache-flume-1.7.0/conf/
d)打开4个窗口,在mbp1和mbp2上同时启动两个flume agent
mbp1:apache-flume-1.7.0-bin$ bin/flume-ng agent -c . -f conf/replicating_Channel_Selector.conf -n a1 -Dflume.root.logger=INFO,console
mbp1:apache-flume-1.7.0-bin$ bin/flume-ng agent -c . -f conf/replicating_Channel_Selector_avro.conf -n a1 -Dflume.root.logger=INFO,console
e)然后在mbp1或mbp2的任意一台机器上,测试产生syslog
mbp1:apache-flume-1.7.0-bin$ echo "hello idoall.org syslog" | nc localhost 5140
f)在mbp1和mbp2的sink窗口,分别可以看到以下信息,这说明信息得到了同步:
17/04/05 14:08:18 INFO ipc.NettyServer: Connection to /192.168.1.51:46844 disconnected.
17/04/05 14:08:52 INFO ipc.NettyServer: [id: 0x90f8fe1f, /192.168.1.50:35873 => /192.168.1.50:5555] OPEN
17/04/05 14:08:52 INFO ipc.NettyServer: [id: 0x90f8fe1f, /192.168.1.50:35873 => /192.168.1.50:5555] BOUND: /192.168.1.50:5555
17/04/05 14:08:52 INFO ipc.NettyServer: [id: 0x90f8fe1f, /192.168.1.50:35873 => /192.168.1.50:5555] CONNECTED: /192.168.1.50:35873
17/04/05 14:08:59 INFO ipc.NettyServer: [id: 0xd6318635, /192.168.1.51:46858 => /192.168.1.50:5555] OPEN
17/04/05 14:08:59 INFO ipc.NettyServer: [id: 0xd6318635, /192.168.1.51:46858 => /192.168.1.50:5555] BOUND: /192.168.1.50:5555
17/04/05 14:08:59 INFO ipc.NettyServer: [id: 0xd6318635, /192.168.1.51:46858 => /192.168.1.50:5555] CONNECTED: /192.168.1.51:46858
17/04/05 14:09:20 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 68 65 6C 6C 6F 20 69 64 6F 61 6C 6C 2E 6F 72 67 hello idoall.org }
10)、案例10:Multiplexing Channel Selector
a)在mbp1创建Multiplexing_Channel_Selector配置文件
mbp:apache-flume-1.7.0-bin$ vi conf/Multiplexing_Channel_Selector.conf
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1 c2
# Describe/configure the source
a1.sources.r1.type = org.apache.flume.source.http.HTTPSource
a1.sources.r1.port = 5140
a1.sources.r1.channels = c1 c2
a1.sources.r1.selector.type = multiplexing
a1.sources.r1.selector.header = type
#映射允许每个值通道可以重叠。默认值可以包含任意数量的通道。
a1.sources.r1.selector.mapping.baidu = c1
a1.sources.r1.selector.mapping.ali = c2
a1.sources.r1.selector.default = c1
# Describe the sink
a1.sinks.k1.type = avro
a1.sinks.k1.channel = c1
a1.sinks.k1.hostname = mbp1
a1.sinks.k1.port = 5555
a1.sinks.k2.type = avro
a1.sinks.k2.channel = c2
a1.sinks.k2.hostname = mbp2
a1.sinks.k2.port = 5555
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
a1.channels.c2.type = memory
a1.channels.c2.capacity = 1000
a1.channels.c2.transactionCapacity = 100
b)在mbp1创建Multiplexing_Channel_Selector_avro配置文件
mbp:apache-flume-1.7.0-bin$ vi conf/Multiplexing_Channel_Selector_avro.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = 5555
# Describe the sink
a1.sinks.k1.type = logger
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
c)将2个配置文件复制到mbp2上一份
mbp1:apache-flume-1.7.0-bin$scp -r conf/Multiplexing_Channel_Selector.conf root@mbp2:/opt/apache-flume-1.7.0-bin/conf/Multiplexing_Channel_Selector.conf
mbp1:apache-flume-1.7.0-bin$scp -r conf/Multiplexing_Channel_Selector_avro.conf root@mbp2:/opt/apache-flume-1.7.0-bin/conf/Multiplexing_Channel_Selector_avro.conf
d)打开4个窗口,在mbp1和mbp2上同时启动两个flume agent
mbp1:apache-flume-1.7.0-bin$bin/flume-ng agent -c . -f conf/Multiplexing_Channel_Selector_avro.conf -n a1 -Dflume.root.logger=INFO,console
mbp1:apache-flume-1.7.0-bin$bin/flume-ng agent -c . -f conf/Multiplexing_Channel_Selector.conf -n a1 -Dflume.root.logger=INFO,console
e)然后在mbp1或mbp2的任意一台机器上,测试产生syslog
mbp1:apache-flume-1.7.0-bin$curl -X POST -d '[{ "headers" :{"type" : "baidu"},"body" : "idoall_TEST1"}]' http://localhost:5140 && curl -X POST -d '[{ "headers" :{"type" : "ali"},"body" : "idoall_TEST2"}]' http://localhost:5140 && curl -X POST -d '[{ "headers" :{"type" : "qq"},"body" : "idoall_TEST3"}]' http://localhost:5140
f)在mbp1的sink窗口,可以看到以下信息:
17/04/05 14:32:21 INFO node.Application: Starting Sink k1
17/04/05 14:32:21 INFO node.Application: Starting Source r1
17/04/05 14:32:21 INFO source.AvroSource: Starting Avro source r1: { bindAddress: 0.0.0.0, port: 5555 }...
17/04/05 14:32:21 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: SOURCE, name: r1: Successfully registered new MBean.
17/04/05 14:32:21 INFO instrumentation.MonitoredCounterGroup: Component type: SOURCE, name: r1 started
17/04/05 14:32:21 INFO source.AvroSource: Avro source r1 started.
17/04/05 14:32:36 INFO ipc.NettyServer: [id: 0xcf00eea6, /192.168.1.50:35916 => /192.168.1.50:5555] OPEN
17/04/05 14:32:36 INFO ipc.NettyServer: [id: 0xcf00eea6, /192.168.1.50:35916 => /192.168.1.50:5555] BOUND: /192.168.1.50:5555
17/04/05 14:32:36 INFO ipc.NettyServer: [id: 0xcf00eea6, /192.168.1.50:35916 => /192.168.1.50:5555] CONNECTED: /192.168.1.50:35916
17/04/05 14:32:44 INFO ipc.NettyServer: [id: 0x432f5468, /192.168.1.51:46945 => /192.168.1.50:5555] OPEN
17/04/05 14:32:44 INFO ipc.NettyServer: [id: 0x432f5468, /192.168.1.51:46945 => /192.168.1.50:5555] BOUND: /192.168.1.50:5555
17/04/05 14:32:44 INFO ipc.NettyServer: [id: 0x432f5468, /192.168.1.51:46945 => /192.168.1.50:5555] CONNECTED: /192.168.1.51:46945
17/04/05 14:34:11 INFO sink.LoggerSink: Event: { headers:{type=baidu} body: 69 64 6F 61 6C 6C 5F 54 45 53 54 31 idoall_TEST1 }
17/04/05 14:34:57 INFO sink.LoggerSink: Event: { headers:{type=qq} body: 69 64 6F 61 6C 6C 5F 54 45 53 54 33
g)在mbp2的sink窗口,可以看到以下信息:
17/04/05 14:32:27 INFO node.Application: Starting Sink k1
17/04/05 14:32:27 INFO node.Application: Starting Source r1
17/04/05 14:32:27 INFO source.AvroSource: Starting Avro source r1: { bindAddress: 0.0.0.0, port: 5555 }...
17/04/05 14:32:27 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: SOURCE, name: r1: Successfully registered new MBean.
17/04/05 14:32:27 INFO instrumentation.MonitoredCounterGroup: Component type: SOURCE, name: r1 started
17/04/05 14:32:27 INFO source.AvroSource: Avro source r1 started.
17/04/05 14:32:36 INFO ipc.NettyServer: [id: 0x7c2f0aec, /192.168.1.50:38104 => /192.168.1.51:5555] OPEN
17/04/05 14:32:36 INFO ipc.NettyServer: [id: 0x7c2f0aec, /192.168.1.50:38104 => /192.168.1.51:5555] BOUND: /192.168.1.51:5555
17/04/05 14:32:36 INFO ipc.NettyServer: [id: 0x7c2f0aec, /192.168.1.50:38104 => /192.168.1.51:5555] CONNECTED: /192.168.1.50:38104
17/04/05 14:32:44 INFO ipc.NettyServer: [id: 0x3d36f553, /192.168.1.51:48599 => /192.168.1.51:5555] OPEN
17/04/05 14:32:44 INFO ipc.NettyServer: [id: 0x3d36f553, /192.168.1.51:48599 => /192.168.1.51:5555] BOUND: /192.168.1.51:5555
17/04/05 14:32:44 INFO ipc.NettyServer: [id: 0x3d36f553, /192.168.1.51:48599 => /192.168.1.51:5555] CONNECTED: /192.168.1.51:48599
17/04/05 14:34:33 INFO sink.LoggerSink: Event: { headers:{type=ali} body: 69 64 6F 61 6C 6C 5F 54 45 53 54 32 idoall_TEST2 }
可以看到,根据header中不同的条件分布到不同的channel上
11)、案例11:Flume Sink Processors
failover的机器是一直发送给其中一个sink,当这个sink不可用的时候,自动发送到下一个sink。
a)在m1创建Flume_Sink_Processors配置文件
- root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf
- a1.sources = r1
- a1.sinks = k1 k2
- a1.channels = c1 c2
- #这个是配置failover的关键,需要有一个sink group
- a1.sinkgroups = g1
- a1.sinkgroups.g1.sinks = k1 k2
- #处理的类型是failover
- a1.sinkgroups.g1.processor.type = failover
- #优先级,数字越大优先级越高,每个sink的优先级必须不相同
- a1.sinkgroups.g1.processor.priority.k1 = 5
- a1.sinkgroups.g1.processor.priority.k2 = 10
- #设置为10秒,当然可以根据你的实际状况更改成更快或者很慢
- a1.sinkgroups.g1.processor.maxpenalty = 10000
- # Describe/configure the source
- a1.sources.r1.type = syslogtcp
- a1.sources.r1.port = 5140
- a1.sources.r1.channels = c1 c2
- a1.sources.r1.selector.type = replicating
- # Describe the sink
- a1.sinks.k1.type = avro
- a1.sinks.k1.channel = c1
- a1.sinks.k1.hostname = m1
- a1.sinks.k1.port = 5555
- a1.sinks.k2.type = avro
- a1.sinks.k2.channel = c2
- a1.sinks.k2.hostname = m2
- a1.sinks.k2.port = 5555
- # Use a channel which buffers events in memory
- a1.channels.c1.type = memory
- a1.channels.c1.capacity = 1000
- a1.channels.c1.transactionCapacity = 100
- a1.channels.c2.type = memory
- a1.channels.c2.capacity = 1000
- a1.channels.c2.transactionCapacity = 100
b)在m1创建Flume_Sink_Processors_avro配置文件
- root@m1:/home/hadoop# vi /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf
- a1.sources = r1
- a1.sinks = k1
- a1.channels = c1
- # Describe/configure the source
- a1.sources.r1.type = avro
- a1.sources.r1.channels = c1
- a1.sources.r1.bind = 0.0.0.0
- a1.sources.r1.port = 5555
- # Describe the sink
- a1.sinks.k1.type = logger
- # Use a channel which buffers events in memory
- a1.channels.c1.type = memory
- a1.channels.c1.capacity = 1000
- a1.channels.c1.transactionCapacity = 100
- # Bind the source and sink to the channel
- a1.sources.r1.channels = c1
- a1.sinks.k1.channel = c1
c)将2个配置文件复制到m2上一份
- root@m1:/home/hadoop/flume-1.5.0-bin# scp -r /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf
- root@m1:/home/hadoop/flume-1.5.0-bin# scp -r /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf root@m2:/home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf
d)打开4个窗口,在m1和m2上同时启动两个flume agent
- root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf -n a1 -Dflume.root.logger=INFO,console
- root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors.conf -n a1 -Dflume.root.logger=INFO,console
e)然后在m1或m2的任意一台机器上,测试产生log
- root@m1:/home/hadoop# echo "idoall.org test1 failover" | nc localhost 5140
f)因为m2的优先级高,所以在m2的sink窗口,可以看到以下信息,而m1没有:
- 14/08/10 15:02:46 INFO ipc.NettyServer: Connection to /192.168.1.51:48692 disconnected.
- 14/08/10 15:03:12 INFO ipc.NettyServer: [id: 0x09a14036, /192.168.1.51:48704 => /192.168.1.51:5555] OPEN
- 14/08/10 15:03:12 INFO ipc.NettyServer: [id: 0x09a14036, /192.168.1.51:48704 => /192.168.1.51:5555] BOUND: /192.168.1.51:5555
- 14/08/10 15:03:12 INFO ipc.NettyServer: [id: 0x09a14036, /192.168.1.51:48704 => /192.168.1.51:5555] CONNECTED: /192.168.1.51:48704
- 14/08/10 15:03:26 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 31 idoall.org test1 }
g)这时我们停止掉m2机器上的sink(ctrl+c),再次输出测试数据:
- root@m1:/home/hadoop# echo "idoall.org test2 failover" | nc localhost 5140
h)可以在m1的sink窗口,看到读取到了刚才发送的两条测试数据:
- 14/08/10 15:02:46 INFO ipc.NettyServer: Connection to /192.168.1.51:47036 disconnected.
- 14/08/10 15:03:12 INFO ipc.NettyServer: [id: 0xbcf79851, /192.168.1.51:47048 => /192.168.1.50:5555] OPEN
- 14/08/10 15:03:12 INFO ipc.NettyServer: [id: 0xbcf79851, /192.168.1.51:47048 => /192.168.1.50:5555] BOUND: /192.168.1.50:5555
- 14/08/10 15:03:12 INFO ipc.NettyServer: [id: 0xbcf79851, /192.168.1.51:47048 => /192.168.1.50:5555] CONNECTED: /192.168.1.51:47048
- 14/08/10 15:07:56 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 31 idoall.org test1 }
- 14/08/10 15:07:56 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 32 idoall.org test2 }
i)我们再在m2的sink窗口中,启动sink:
- root@m1:/home/hadoop# /home/hadoop/flume-1.5.0-bin/bin/flume-ng agent -c . -f /home/hadoop/flume-1.5.0-bin/conf/Flume_Sink_Processors_avro.conf -n a1 -Dflume.root.logger=INFO,console
j)输入两批测试数据:
- root@m1:/home/hadoop# echo "idoall.org test3 failover" | nc localhost 5140 && echo "idoall.org test4 failover" | nc localhost 5140
k)在m2的sink窗口,我们可以看到以下信息,因为优先级的关系,log消息会再次落到m2上:
- 14/08/10 15:09:47 INFO node.Application: Starting Sink k1
- 14/08/10 15:09:47 INFO node.Application: Starting Source r1
- 14/08/10 15:09:47 INFO source.AvroSource: Starting Avro source r1: { bindAddress: 0.0.0.0, port: 5555 }...
- 14/08/10 15:09:47 INFO instrumentation.MonitoredCounterGroup: Monitored counter group for type: SOURCE, name: r1: Successfully registered new MBean.
- 14/08/10 15:09:47 INFO instrumentation.MonitoredCounterGroup: Component type: SOURCE, name: r1 started
- 14/08/10 15:09:47 INFO source.AvroSource: Avro source r1 started.
- 14/08/10 15:09:54 INFO ipc.NettyServer: [id: 0x96615732, /192.168.1.51:48741 => /192.168.1.51:5555] OPEN
- 14/08/10 15:09:54 INFO ipc.NettyServer: [id: 0x96615732, /192.168.1.51:48741 => /192.168.1.51:5555] BOUND: /192.168.1.51:5555
- 14/08/10 15:09:54 INFO ipc.NettyServer: [id: 0x96615732, /192.168.1.51:48741 => /192.168.1.51:5555] CONNECTED: /192.168.1.51:48741
- 14/08/10 15:09:57 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 32 idoall.org test2 }
- 14/08/10 15:10:43 INFO ipc.NettyServer: [id: 0x12621f9a, /192.168.1.50:38166 => /192.168.1.51:5555] OPEN
- 14/08/10 15:10:43 INFO ipc.NettyServer: [id: 0x12621f9a, /192.168.1.50:38166 => /192.168.1.51:5555] BOUND: /192.168.1.51:5555
- 14/08/10 15:10:43 INFO ipc.NettyServer: [id: 0x12621f9a, /192.168.1.50:38166 => /192.168.1.51:5555] CONNECTED: /192.168.1.50:38166
- 14/08/10 15:10:43 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 33 idoall.org test3 }
- 14/08/10 15:10:43 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 34 idoall.org test4 }
12)、案例12:Load balancing Sink Processor
load balance type和failover不同的地方是,load balance有两个配置,一个是轮询,一个是随机。两种情况下如果被选择的sink不可用,就会自动尝试发送到下一个可用的sink上面。
a)在m1创建Load_balancing_Sink_Processors配置文件
mbp:apache-flume-1.7.0-bin$ vi conf/load_balancing_sink_processors.conf
a1.sources = r1
a1.sinks = k1 k2
a1.channels = c1
#这个是配置Load balancing的关键,需要有一个sink group
a1.sinkgroups = g1
a1.sinkgroups.g1.sinks = k1 k2
a1.sinkgroups.g1.processor.type = load_balance
a1.sinkgroups.g1.processor.backoff = true
a1.sinkgroups.g1.processor.selector = round_robin
# Describe/configure the source
a1.sources.r1.type = syslogtcp
a1.sources.r1.port = 5140
a1.sources.r1.channels = c1
# Describe the sink
a1.sinks.k1.type = avro
a1.sinks.k1.channel = c1
a1.sinks.k1.hostname = m1
a1.sinks.k1.port = 5555
a1.sinks.k2.type = avro
a1.sinks.k2.channel = c1
a1.sinks.k2.hostname = m2
a1.sinks.k2.port = 5555
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
b)在m1创建Load_balancing_Sink_Processors_avro配置文件
mbp:apache-flume-1.7.0-bin$ vi conf/load_balancing_sink_processors_avro.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = avro
a1.sources.r1.channels = c1
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = 5555
# Describe the sink
sinks.k1.type = logger
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
c)将2个配置文件复制到mbp2上一份
root@mbp1:/opt/apache-flume-1.7.0-bin# scp -r conf/Load_balancing_Sink_Processors.conf root@mbp2:/opt/apache-flume-1.7.0-bin/conf/Load_balancing_Sink_Processors.conf
root@mbp1:/opt/apache-flume-1.7.0-bin# scp -r conf/Load_balancing_Sink_Processors_avro.conf root@mbp2:/opt/apache-flume-1.7.0-bin/conf/Load_balancing_Sink_Processors_avro.conf
d)打开4个窗口,在mbp1和mbp2上同时启动两个flume agent
root@mbp1:/opt# /opt/apache-flume-1.7.0-bin/bin/flume-ng agent -c . -f conf/Load_balancing_Sink_Processors_avro.conf -n a1 -Dflume.root.logger=INFO,console
root@mbp1:/opt# /opt/apache-flume-1.7.0-bin/bin/flume-ng agent -c . -f conf/Load_balancing_Sink_Processors.conf -n a1 -Dflume.root.logger=INFO,console
e)然后在mbp1或mbp2的任意一台机器上,测试产生log,一行一行输入,输入太快,容易落到一台机器上
root@mbp1:/opt# echo "idoall.org test1" | nc localhost 5140
root@mbp1:/opt# echo "idoall.org test2" | nc localhost 5140
root@mbp1:/opt# echo "idoall.org test3" | nc localhost 5140
root@mbp1:/opt# echo "idoall.org test4" | nc localhost 5140
f)在mbp1的sink窗口,可以看到以下信息:
17/04/05 15:35:29 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 32 idoall.org test2 }
17/04/05 15:35:33 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 34 idoall.org test4 }
g)在mbp2的sink窗口,可以看到以下信息:
17/04/05 15:35:27 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 31 idoall.org test1 }
17/08/05 15:35:29 INFO sink.LoggerSink: Event: { headers:{Severity=0, flume.syslog.status=Invalid, Facility=0} body: 69 64 6F 61 6C 6C 2E 6F 72 67 20 74 65 73 74 33 idoall.org test3 }
说明轮询模式起到了作用。
13)、案例13:Hbase sink
a)在测试之前,请先参考《ubuntu12.04+hadoop2.2.0+zookeeper3.4.5+hbase0.96.2+hive0.13.1分布式环境部署》将hbase启动
b)然后将以下文件复制到flume中:
cp hbase-1.3.0-bin/lib/protobuf-java-2.5.0.jar apache-flume-1.7.0-bin/lib/
cp hbase-1.3.0-bin/lib/habase-client-1.3.0.jar apache-flume-1.7.0-bin/lib/
cp hbase-1.3.0-bin/lib/hbase-common-1.3.0.jar apache-flume-1.7.0-bin/lib/
cp hbase-1.3.0-bin/lib/hbase-protocol-1.3.0.jar apache-flume-1.7.0-bin/lib/
cp hbase-1.3.0-bin/lib/hbase-server-1.3.0.jar apache-flume-1.7.0-bin/lib/
cp hbase-1.3.0-bin/lib/hbase-hadoop2-compat-1.3.0.jar apache-flume-1.7.0-bin/lib/
cp hbase-1.3.0-bin/lib/hbase-hadoop-compat-1.3.0.jar apache-flume-1.7.0-bin/lib/
cp hbase-1.3.0-bin/lib/htrace-core-3.1.0-incubating.jar apache-flume-1.7.0-bin/lib/
c)确保test_idoall_org表在hbase中已经存在
d)在m1创建hbase_simple配置文件
mbp:apache-flume-1.7.0-bin$ vi conf/hbase_simple.conf
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# Describe/configure the source
a1.sources.r1.type = syslogtcp
a1.sources.r1.port = 5140
a1.sources.r1.host = localhost
a1.sources.r1.channels = c1
# Describe the sink
a1.sinks.k1.type = logger
a1.sinks.k1.type = hbase
a1.sinks.k1.table = test_idoall_org
a1.sinks.k1.columnFamily = name
a1.sinks.k1.column = idoall
a1.sinks.k1.serializer = org.apache.flume.sink.hbase.RegexHbaseEventSerializer
a1.sinks.k1.channel = memoryChannel
# Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
e)启动flume agent
mbp:apache-flume-1.7.0-bin$ bin/flume-ng agent -n a1 -c conf -f conf/hbase_simple.conf -Dflume.root.logger=INFO,console
f)测试产生syslog
mbp:apache-flume-1.7.0-bin$ echo "hello idoall.org from flume" | nc localhost 5140
g)这时登录到hbase中,可以发现新数据已经插入
mbp@opt# hbase-1.3.0/bin/hbase shell
2017-04-05 16:09:48,984 INFO [main] Configuration.deprecation: hadoop.native.lib is deprecated. Instead, use io.native.lib.available
HBase Shell; enter 'help<RETURN>' for list of supported commands.
Type "exit<RETURN>" to leave the HBase Shell
Version 0.96.2-hadoop2, r1581096, Mon Mar 24 16:03:18 PDT 2017
hbase(main):001:0> list
TABLE
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/opt/hbase-1.3.0/lib/slf4j-log4j12-1.6.4.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/opt/hadoop-2.8.0/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
hbase2hive_idoall
hive2hbase_idoall
test_idoall_org
3 row(s) in 2.6880 seconds
=> ["hbase2hive_idoall", "hive2hbase_idoall", "test_idoall_org"]
hbase(main):002:0> scan "test_idoall_org"
ROW COLUMN+CELL
10086 column=name:idoall, timestamp=1406424831473, value=idoallvalue
1 row(s) in 0.0550 seconds
hbase(main):003:0> scan "test_idoall_org"
ROW COLUMN+CELL
10086 column=name:idoall, timestamp=1406424831473, value=idoallvalue
1407658495588-XbQCOZrKK8-0 column=name:payload, timestamp=1407658498203, value=hello idoall.org from flume
2 row(s) in 0.0200 seconds
hbase(main):004:0> quit
经过这么多flume的例子测试,如果你全部做完后,会发现flume的功能真的很强大,可以进行各种搭配来完成你想要的工作,俗话说师傅领进门,修行在个人,如何能够结合你的产品业务,将flume更好的应用起来,快去动手实践吧。
2、Flume1.7.0入门:安装、部署、及flume的案例的更多相关文章
- Flume1.9.0的安装、部署、简单应用(含分布式、与Hadoop3.1.2、Hbase1.4.9的案例)
目录 目录 前言 什么是Flume? Flume的特点 Flume的可靠性 Flume的可恢复性 Flume的一些核心概念 Flume的官方网站在哪里? Flume在哪里下载以及如何安装? 设置环境变 ...
- Storm-0.9.0.1安装部署 指导
可以带着下面问题来阅读本文章: 1.Storm只支持什么传输 2.通过什么配置,可以更改Zookeeper默认端口 3.Storm UI必须和Storm Nimbus部署在同一台机器上,UI无法正常工 ...
- kafka_2.11-2.0.0_安装部署
参考博文:kafka 配置文件参数详解 参考博文:Kafka[第一篇]Kafka集群搭建 参考博文:如何为Kafka集群选择合适的Partitions数量 参考博文:Kafka Server.prop ...
- 大数据篇:DolphinScheduler-1.2.0.release安装部署
大数据篇:DolphinScheduler-1.2.0.release安装部署 1 配置jdk #查看命令 rpm -qa | grep java #删除命令 rpm -e --nodeps xxx ...
- Flume1.5.0入门:安装、部署、及flume的案例
转自:http://www.aboutyun.com/thread-8917-1-1.html 问题导读1.什么是flume2.flume的官方网站在哪里?3.flume有哪些术语?4.如何配置flu ...
- Flume1.5.0的安装、部署、简单应用(含伪分布式、与hadoop2.2.0、hbase0.96的案例)
目录: 一.什么是Flume? 1)flume的特点 2)flume的可靠性 3)flume的可恢复性 4)flume 的 一些核心概念 二.flume的官方网站在哪里? 三.在哪里下载? 四.如何安 ...
- WIN中SharePoint Server 2010 入门安装部署详解
目前流行的原始安装文件基本都是这样的:Windows Server 2008 R2+SQL Server 2008R2+SharePoint Server 2010 这个初始环境原本也无可厚非 ...
- flume-1.6.0单节点部署
这个不多说,直接上干货,部署很简单! 步骤一:flume的下载 当然,这里也可以使用wget命令在线下载,很简单,不多说. 步骤二:flume的上传 [hadoop@djt002 flume]$ ls ...
- [DPI][suricata] suricata-4.0.3 安装部署
suricata 很值得借鉴.但是首先还是要安装使用,作为第一步的熟悉. 安装文档:https://redmine.openinfosecfoundation.org/projects/suricat ...
随机推荐
- struts2——多文件上传
<%@ page language="java" contentType="text/html; charset=UTF-8" pageEncoding= ...
- RDP 协议组件 X.224 在协议流中发现一个错误并且中断了客户端连接
如果你的服务器有如下错误: “RDP 协议组件 X.224 在协议流中发现一个错误并且中断了客户端连接.” 可能的有2种: 1:你试试能否能继续远程登陆,有可能你的远程登陆组件出现问题. 2:有人攻击 ...
- cn_03_r2_enterprise_sp2_x86_vl_X13_46432
1. 使用的 ISO为:cn_win_srv_2003_r2_enterprise_with_sp2_vl_cd1_X13-46432.iso 2.序列号 用的序列号是“DF74D-TWR86-D3F ...
- scala学习手记20 - 方法返回类型推断
除了推演变量的类型,scala也会推演方法的返回类型.不过这里有一处需要注意:方法返回类型的推演依赖于方法的定义方式.如果用等号"="定义方法,scala就会推演方法返回类型:否则 ...
- 爬虫第六篇:scrapy框架爬取某书网整站爬虫爬取
新建项目 # 新建项目$ scrapy startproject jianshu# 进入到文件夹 $ cd jainshu# 新建spider文件 $ scrapy genspider -t craw ...
- EntityFramework之领域驱动设计实践
EntityFramework之领域驱动设计实践 - 前言 EntityFramework之领域驱动设计实践 (一):从DataTable到EntityObject EntityFramework之领 ...
- JS获取元素计算过后的样式
获取元素计算过后的样式 Window.getComputedStyle() 方法会在一个元素应用完有效样式且计算完所有属性的基本值之后给出所有 CSS 属性的值. 语法: let style = wi ...
- python之list,tuple,str,dic简单记录(二)
切片对象:例子:In [13]: l = [1,23,4,5,5,6,8]In [14]: l[::1]Out[14]: [1, 23, 4, 5, 5, 6, 8] In [15]: l[::2]O ...
- 分享知识-快乐自己:FastDFS详解
在使用fdfs之前,需要对其有一定的了解,这篇文章作为准备篇,将针对fdfs的简介,功能性,使用场景等方面进行介绍 一):起源 淘宝网开放平台技术部资深架构师余庆先生首先回顾了自己在Yahoo工作时的 ...
- 十 web爬虫讲解2—Scrapy框架爬虫—Scrapy安装—Scrapy指令
Scrapy框架安装 1.首先,终端执行命令升级pip: python -m pip install --upgrade pip2.安装,wheel(建议网络安装) pip install wheel ...