POJ_2533 Longest Ordered Subsequence【DP】【最长上升子序列】
POJ_2533 Longest Ordered Subsequence【DP】【最长递增子序列】
Longest Ordered Subsequence
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 58448 Accepted: 26207
Description
A numeric sequence of ai is ordered if a1 < a2 < … < aN. Let the subsequence of the given numeric sequence (a1, a2, …, aN) be any sequence (ai1, ai2, …, aiK), where 1 <= i1 < i2 < … < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).
Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.
Input
The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000
Output
Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.
Sample Input
7
1 7 3 5 9 4 8
Sample Output
4
题意
给出一个数组,求数组中的最长递增子序列的长度
思路一
我们可以用两个数组,第一个数组为原数组,第二个数组为原数组经过排序加去重(如果是非下降子序列就不需要去重),然后求两个数组的最长公共子序列就可以了。
AC代码一
#include <iostream> //转化为求LCS
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <string>
#include <cstring>
#include <map>
#include <stack>
#include <set>
#include <cstdlib>
#include <ctype.h>
#include <numeric>
#include <sstream>
using namespace std;
typedef long long LL;
const double PI = 3.14159265358979323846264338327;
const double E = 2.718281828459;
const double eps = 1e-6;
const int MAXN = 0x3f3f3f3f;
const int MINN = 0xc0c0c0c0;
const int maxn = 1e3 + 5;
const int MOD = 1e9 + 7;
int a[maxn], b[maxn], dp[maxn][maxn];
int main()
{
int n;
cin >> n;
int i, j;
for (i = 0; i < n; i++)
{
scanf("%d", &a[i]);
b[i] = a[i];
}
sort(b, b + n);
int dre = unique(b, b + n) - b; //需要去重 因为是最长上升的 如果是非下降,那么不需要去重
memset(dp, 0, sizeof(dp));
for (i = 0; i < dre; i++)
{
if (a[0] == b[i])
dp[0][i] = 1;
else if (i)
dp[0][i] = dp[0][i - 1];
}
for (i = 0; i < n; i++)
{
if (b[0] == a[i])
dp[i][0] = 1;
else if (i)
dp[i][0] = dp[i - 1][0];
}
for (i = 1; i < n; i++)
{
for (j = 1; j < dre; j++)
{
if (a[i] == b[j])
dp[i][j] = dp[i - 1][j - 1] + 1;
else
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
}
}
cout << dp[n - 1][dre - 1] << endl;
}
思路二
如果一个数小于它前面的一个数,那么到这个数为止的最长上升子序列就是前面那个数的最长上升子序列 + 1 然后每个数往前扫一遍就可以了
AC代码二
#include <iostream> //DP
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <string>
#include <cstring>
#include <map>
#include <stack>
#include <set>
#include <cstdlib>
#include <ctype.h>
#include <numeric>
#include <sstream>
using namespace std;
typedef long long LL;
const double PI = 3.14159265358979323846264338327;
const double E = 2.718281828459;
const double eps = 1e-6;
const int MAXN = 0x3f3f3f3f;
const int MINN = 0xc0c0c0c0;
const int maxn = 1e3 + 5;
const int MOD = 1e9 + 7;
int arr[maxn], dp[maxn];
int main()
{
int n;
cin >> n;
int i, j;
for (i = 0; i < n; i++)
scanf("%d", &arr[i]);
memset(dp, 0, sizeof(dp));
int ans = 1;
for (i = 0; i < n; i++)
{
dp[i] = 1;
for (j = i - 1; j >= 0; j--)
{
if (arr[i] > arr[j])
dp[i] = max(dp[i], dp[j] + 1);
}
if (dp[i] > ans)
ans = dp[i];
}
cout << ans << endl;
}
POJ_2533 Longest Ordered Subsequence【DP】【最长上升子序列】的更多相关文章
- POJ2533 Longest Ordered Subsequence —— DP 最长上升子序列(LIS)
题目链接:http://poj.org/problem?id=2533 Longest Ordered Subsequence Time Limit: 2000MS Memory Limit: 6 ...
- 【POJ - 2533】Longest Ordered Subsequence (最长上升子序列 简单dp)
Longest Ordered Subsequence 搬中文 Descriptions: 给出一个序列,求出这个序列的最长上升子序列. 序列A的上升子序列B定义如下: B为A的子序列 B为严格递增序 ...
- 题解报告:poj 2533 Longest Ordered Subsequence(最长上升子序列LIS)
Description A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence ...
- POJ 2533 Longest Ordered Subsequence(最长上升子序列(NlogN)
传送门 Description A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subseque ...
- POJ2533 Longest Ordered Subsequence 【最长递增子序列】
Longest Ordered Subsequence Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 32192 Acc ...
- POJ - 2533 Longest Ordered Subsequence(最长上升子序列)
d.最长上升子序列 s.注意是严格递增 c.O(nlogn) #include<iostream> #include<stdio.h> using namespace std; ...
- [POJ2533]Longest Ordered Subsequence<dp>
题目链接:http://poj.org/problem?id=2533 描述: A numeric sequence of ai is ordered if a1 < a2 < ... & ...
- POJ_2533 Longest Ordered Subsequence 【LIS】
一.题目 Longest Ordered Subsequence 二.分析 动态规划里的经典问题.重在DP思维. 如果用最原始的DP思想做,状态转移方程为$DP[i] = max(DP[j] + 1) ...
- poj 2533 Longest Ordered Subsequence(dp)
题目:http://poj.org/problem?id=2533 题意:最长上升子序列.... 以前做过,课本上的思想 #include<iostream> #include<cs ...
随机推荐
- Installing scipy on redhat with error “no lapack/blas resources found”
这是更新scipy出现的结果,需要新版本的scipy,而机器上只装了0.7的版本,更新的时候报错,找到了一个解决方法: wget http://mirror.centos.org/centos/6/o ...
- ADO.NET数据库编程
ADO.NET数据库编程 1.ADO.NET的相关概念. Microsoft的新一代技术,是ADO组件的后继者. 主要目的是在.NET Framework平台存取数据. 提供一致的对象模型,可以存取和 ...
- 客户端-服务器端互动比较与原生实例(比较ajax,server-sent event,websocket/netsocket)
昨日学习了websocket的原生实例,觉得有必要把几种常见的客户端-服务器端无刷新交互形式列举比较: 一.Ajax:客户端决定何时主动向Server端发请求 如:无刷新评论.无刷新更换图片. 主要目 ...
- Java释出的时候,AWT作为Java最弱的组件受到不小的批评
Java释出的时候,AWT作为Java最弱的组件受到不小的批评. 最根本的缺点是AWT在原生的用户界面之上仅提供了一个非常薄的抽象层. 例如,生成一个AWT的 复选框会导致AWT直接调用下层原生例程来 ...
- Bower和Gulp集成前端资源
在我们开始前先介绍下流程: 安装node.js. 安装npm. 全局安装bower. 根目录创建 .bowerrc (可选) 在项目中安装bower 并创建 bower.json 文件,运行 bowe ...
- Linux下搜索文件find、which、whereis、locate
Linux下搜索文件find.which.whereis.locate: - which 寻找“执行文件” - -a 将所有可找到的命令均列出,而不仅仅列出第一个找到的命令名称 - whereis 寻 ...
- 【BZOJ3160】万径人踪灭 Manacher+FFT
[BZOJ3160]万径人踪灭 Description Input Output Sample Input Sample Output HINT 题解:自己想出来1A,先撒花~(其实FFT部分挺裸的) ...
- iOS设置导航栏透明度
As I support Colin's answer, I want to give you an additional hint to customize the appearance of an ...
- 用 Stellar.js 制作视差滚动效果
参考 http://doc.bropaul.com/Stellar.js/docs/ https://github.com/markdalgleish/stellar.js#download http ...
- Cocos2d-x学习笔记:CCSprite的使用总结
一.精灵创建及初始化 备注:默认锚点ccp(0.5,0.5),默认位置 ccp(0,0),contentSize为精灵图片尺寸 1.从图片文件创建 2.从帧缓存创建: 3.初始化及自定义大小 4. 从 ...