网络表示

 

Word2Vec

word2vec是根据词的共现关系,将词映射到低维向量,并保留了语料中丰富的信息
  • Skip-Gram
    • 给定input word 预测上下文( 如已知 Wt 预测上下文Wt-2,Wt-1,Wt+1)
  • CBOW
    • 给定上下文,预测input word( 如已知 Wt 上下文Wt-2,Wt-1,Wt+1 预测 Wt)
 
 
分为两个部分:
  • 建立模型
    • 目的:基于训练数据构建神经网络,训练好后使用模型通过训练数据所学到的参数(建模不是最终目的)
  • 通过模型获取嵌入词向量
 
基于神经网络的语言模型的目标函数通常取为如下对数似然函数:
 
关键是条件概率函数P的构造
基于Hierarchical softmax 的CBOW 模型优化目标函数如上
基于Hierarchical softmax 的skip-gram 模型,优化的目标函数如
 
 

DeepWalk

将一个网络中的每个节点映射成一个低维的向量,即希望在原始网络中关系越紧密的结点对应的向量在其空间中距离越近
  • word2vec针对的是文本,或者说是有序的单词序列
  • Deepwalk针对的是带有拓扑结构的网络
  • 针对每个节点跑了个随机游走,游走过程中就得到了一系列的有序节点序列,这些节点序列可以类比于文章的句子,节点类比于句子中的单词,然后再使用word2vec跑,得到对应的向量
过程:
  • 为每个节点生成随机游走Wv,然后用来更新网络嵌入(7)
  • 选择skip-gram 作为更新节点表示的方法

 
 
skip -gram
关键思想:产长预测句子中附近的单词嵌入
 
 

Node2vec

类似于deepwalk,主要的创新点在于改进了随机游走的策略,定义了两个参数p和q,在BFS和DFS中达到一个平衡,同时考虑到局部和宏观的信息,并且具有很高的适应性
 

LINE(Large scale information network embedding)

2015年提出的一中网络表示学习方法,该方法提出了一阶相似度与二阶邻近度的概念,基于这两个邻近度,提出了优化函数,得到的最优化结果即为每个节点的向量表示
  • 一阶相似性:直接相连的节点表示尽可能相近(适用于无向)
  • 二阶相似性:两个节点公共的邻居节点越多,两个节点的表示越相近,类似,使用预警相似的两个单词很有可能是同义词(适用于有向图和无向图)
  • 边缘采样算法优化目标,采样概率与权重成比例
    • 因为边的权重差异大,直接 SGD 效果不好,这里按照边的权重采样,每条边当作 binary 算
  • DW 没有提供明确的目标,没有阐明哪些网络属性将被保留,仅适用于未加权网络,LINE 适用于网络的加权和不加权的边
 

MMDW(Max-Margin DeepWalk Discriminative Learning of Network Representation)

DW本身是无监督的,如果能够引入label数据,生成的向量对于分类任务会有更好的作用
将DeepWalk和Max-Margin(SVM)结合起来
 
 

TADW(Network Representation Learning with Rich Text Information.)

在矩阵分解这个框架中,将文本直接以一个子矩阵的方式加入,会使学到的向量包含更丰富的信息。
文本矩阵是对TFIDF矩阵的SVD降维结果

Extra Info

CANE
CENE(A General Framework for Content-enhanced Network Representation Learning)
问题
同时利用网络结构特征和文本特征来学习网络中节点的embedding
 

Network Embedding的更多相关文章

  1. 论文:network embedding

    KDD2016: network embedding model: deep walk(kdd 2014): http://videolectures.net/kdd2014_perozzi_deep ...

  2. On the Optimal Approach of Survivable Virtual Network Embedding in Virtualized SDN

    Introduction and related work 云数据中心对于虚拟技术是理想的创新地方. 可生存性虚拟网络映射(surviavable virtual network embedding ...

  3. NEU(Fst Network Embedding Enhancement via High Order Proximity Approximation)

    NEU(Fst Network Embedding Enhancement via High Order Proximity Approximation) NEU:通过对高阶相似性的近似,加持快速网络 ...

  4. Content to Node: Self-Translation Network Embedding

    paper:https://dl.acm.org/citation.cfm?id=3219988 data & code:http://dm.nankai.edu.cn/code/STNE.r ...

  5. Context-Aware Network Embedding for Relation Modeling

    Context-Aware Network Embedding for Relation Modeling 论文:http://www.aclweb.org/anthology/P17-1158 创新 ...

  6. network embedding 需读论文

    Must-read papers on NRL/NE. github: https://github.com/nate-russell/Network-Embedding-Resources NRL: ...

  7. Network Embedding 论文小览

    Network Embedding 论文小览 转自:http://blog.csdn.net/Dark_Scope/article/details/74279582,感谢分享! 自从word2vec横 ...

  8. 论文阅读:Relation Structure-Aware Heterogeneous Information Network Embedding

    Relation Structure-Aware Heterogeneous Information Network Embedding(RHINE) (AAAI 2019) 本文结构 (1) 解决问 ...

  9. [论文阅读笔记] Fast Network Embedding Enhancement via High Order Proximity Approximati

    [论文阅读笔记] Fast Network Embedding Enhancement via High Order Proximity Approximation 本文结构 解决问题 主要贡献 主要 ...

随机推荐

  1. Jquery常用正则验证

    常用校验的正则表达式var rulesConfig = { /** * str.replace(/^\s+|\s+$/g, '') 解析: str:要替换的字符串 \s : 表示 space ,空格 ...

  2. BZOJ4004:[JLOI2015]装备购买——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4004 https://www.luogu.org/problemnew/show/P3265 脸哥 ...

  3. bzoj1045: [HAOI2008] 糖果传递(思维题)

    首先每个人一定分到的糖果都是所有糖果的平均数ave. 设第i个人给i-1个人Xi个糖果,则有Ai-Xi+X(i+1)=ave. 则A1-X1+X2=ave,A2-X2+X3=ave,A3-X3+X4= ...

  4. bzoj1010: [HNOI2008]玩具装箱toy(斜率优化DP)

    Orz CYC帮我纠正了个错误.斜率优化并不需要决策单调性,只需要斜率式右边的式子单调就可以了 codevs也有这题,伪·双倍经验233 首先朴素DP方程很容易看出:f[i]=min(f[j]+(i- ...

  5. Eclipse的Project Facets属性设置解决项目无故报错

    新检出项目,发现代码无故报错,各种尝试,最终发现是因为  项目右键中的 project Facets 属性中的 java 后面的 version 版本和项目 build path 的 jdk 版本不一 ...

  6. 禁用 nouveau 驱动

    安装Nvidia显卡的官方驱动和系统自带的nouveau驱动冲突. 安装网上方法尝试了modprob.d/blacklist.conf里的各种修改,重启以后还是没有成功警用nouveau驱动 最后看见 ...

  7. snmp理论篇

    SNMP协议入门 1.引言 基于TCP/IP的网络管理包含3个组成部分: 1) 一个管理信息库MIB(Management Information Base).管理信息库包含所有代理进程的所有可被查询 ...

  8. [Jenkins 新插件] 兼容阿里开发手册 (P3C) 的火线插件安装使用教程

    一.前言 火线(Fireline)的Jenkins官方插件已经上线,目前火线不仅能检查出安卓代码中的安全类问题和内存泄露问题,还兼容了阿里开源的Java开发规约(P3C项目),本文将以教程的形式帮助大 ...

  9. DBA操作常用命令

    一.ORACLE的启动和关闭   1.在单机环境下   要想启动或关闭ORACLE系统必须首先切换到ORACLE用户,如下   su - oracle      a.启动ORACLE系统   orac ...

  10. 2015/8/18 Python基本使用(2)

    关于判断和循环语句 Python的判断和循环语句非常直观,读起来很接近自然语言. 判断语句if标准的if语句是如下结构: if expression: if_suite 如果expression的表达 ...