转 C++11 并发指南std::condition_variable详解
之前看过,但是一直没有怎么用就忘了,转一篇别人的文字记录下来
本文将介绍 C++11 标准中 <condition_variable> 头文件里面的类和相关函数。
<condition_variable > 头文件主要包含了与条件变量相关的类和函数。相关的类包括 std::condition_variable 和 std::condition_variable_any,还有枚举类型std::cv_status。另外还包括函数 std::notify_all_at_thread_exit(),下面分别介绍一下以上几种类型。
std::condition_variable 类介绍
std::condition_variable 是条件变量,更多有关条件变量的定义参考维基百科。Linux 下使用 Pthread 库中的 pthread_cond_*() 函数提供了与条件变量相关的功能, Windows 则参考 MSDN。
当 std::condition_variable 对象的某个 wait 函数被调用的时候,它使用 std::unique_lock(通过 std::mutex) 来锁住当前线程。当前线程会一直被阻塞,直到另外一个线程在相同的 std::condition_variable 对象上调用了 notification 函数来唤醒当前线程。
std::condition_variable 对象通常使用 std::unique_lock<std::mutex> 来等待,如果需要使用另外的 lockable 类型,可以使用 std::condition_variable_any 类,本文后面会讲到 std::condition_variable_any 的用法。
首先我们来看一个简单的例子
#include <iostream> // std::cout
#include <thread> // std::thread
#include <mutex> // std::mutex, std::unique_lock
#include <condition_variable> // std::condition_variable std::mutex mtx; // 全局互斥锁.
std::condition_variable cv; // 全局条件变量.
bool ready = false; // 全局标志位. void do_print_id(int id)
{
std::unique_lock <std::mutex> lck(mtx);
while (!ready) // 如果标志位不为 true, 则等待...
cv.wait(lck); // 当前线程被阻塞, 当全局标志位变为 true 之后,
// 线程被唤醒, 继续往下执行打印线程编号id.
std::cout << "thread " << id << '\n';
} void go()
{
std::unique_lock <std::mutex> lck(mtx);
ready = true; // 设置全局标志位为 true.
cv.notify_all(); // 唤醒所有线程.
} int main()
{
std::thread threads[10];
// spawn 10 threads:
for (int i = 0; i < 10; ++i)
threads[i] = std::thread(do_print_id, i); std::cout << "10 threads ready to race...\n";
go(); // go! for (auto & th:threads)
th.join(); return 0;
}
执行结果如下:
concurrency ) ./ConditionVariable-basic1
10 threads ready to race...
thread 1
thread 0
thread 2
thread 3
thread 4
thread 5
thread 6
thread 7
thread 8
thread 9
好了,对条件变量有了一个基本的了解之后,我们来看看 std::condition_variable 的各个成员函数。
std::condition_variable 构造函数
default (1) |
condition_variable(); |
---|---|
copy [deleted] (2) |
condition_variable (const condition_variable&) = delete; |
std::condition_variable 的拷贝构造函数被禁用,只提供了默认构造函数。
std::condition_variable::wait() 介绍
unconditional (1) |
void wait (unique_lock<mutex>& lck); |
---|---|
predicate (2) |
template <class Predicate> |
std::condition_variable 提供了两种 wait() 函数。当前线程调用 wait() 后将被阻塞(此时当前线程应该获得了锁(mutex),不妨设获得锁 lck),直到另外某个线程调用 notify_* 唤醒了当前线程。
在线程被阻塞时,该函数会自动调用 lck.unlock() 释放锁,使得其他被阻塞在锁竞争上的线程得以继续执行。
另外,一旦当前线程获得通知(notified,通常是另外某个线程调用 notify_* 唤醒了当前线程),wait() 函数也是自动调用 lck.lock(),使得 lck 的状态和 wait 函数被调用时相同。
在第二种情况下(即设置了 Predicate),只有当 pred 条件为 false 时调用 wait() 才会阻塞当前线程,并且在收到其他线程的通知后只有当 pred 为 true 时才会被解除阻塞。因此第二种情况类似以下代码:
while (!pred()) wait(lck);
请看下面例子(参考):
#include <iostream> // std::cout
#include <thread> // std::thread, std::this_thread::yield
#include <mutex> // std::mutex, std::unique_lock
#include <condition_variable> // std::condition_variable std::mutex mtx;
std::condition_variable cv; int cargo = 0;
bool shipment_available()
{
return cargo != 0;
} // 消费者线程.
void consume(int n)
{
for (int i = 0; i < n; ++i) {
std::unique_lock <std::mutex> lck(mtx);
cv.wait(lck, shipment_available);
std::cout << cargo << '\n';
cargo = 0;
}
} int main()
{
std::thread consumer_thread(consume, 10); // 消费者线程. // 主线程为生产者线程, 生产 10 个物品.
for (int i = 0; i < 10; ++i) {
while (shipment_available())
std::this_thread::yield();
std::unique_lock <std::mutex> lck(mtx);
cargo = i + 1;
cv.notify_one();
} consumer_thread.join(); return 0;
}
程序执行结果如下:
concurrency ) ./ConditionVariable-wait
1
2
3
4
5
6
7
8
9
10
std::condition_variable::wait_for() 介绍
unconditional (1) |
template <class Rep, class Period> |
---|---|
predicate (2) |
template <class Rep, class Period, class Predicate> |
与 std::condition_variable::wait() 类似,不过 wait_for 可以指定一个时间段,在当前线程收到通知或者指定的时间 rel_time 超时之前,该线程都会处于阻塞状态。而一旦超时或者收到了其他线程的通知,wait_for 返回,剩下的处理步骤和 wait() 类似。
另外,wait_for 的重载版本(predicte(2))的最后一个参数 pred 表示 wait_for 的预测条件,只有当 pred 条件为 false 时调用 wait() 才会阻塞当前线程,并且在收到其他线程的通知后只有当 pred 为 true 时才会被解除阻塞,因此相当于如下代码:
return wait_until (lck, chrono::steady_clock::now() + rel_time, std::move(pred));
请看下面的例子(参考),下面的例子中,主线程等待 th 线程输入一个值,然后将 th 线程从终端接收的值打印出来,在 th 线程接受到值之前,主线程一直等待,每个一秒超时一次,并打印一个 ".":
#include <iostream> // std::cout
#include <thread> // std::thread
#include <chrono> // std::chrono::seconds
#include <mutex> // std::mutex, std::unique_lock
#include <condition_variable> // std::condition_variable, std::cv_status std::condition_variable cv; int value; void do_read_value()
{
std::cin >> value;
cv.notify_one();
} int main ()
{
std::cout << "Please, enter an integer (I'll be printing dots): \n";
std::thread th(do_read_value); std::mutex mtx;
std::unique_lock<std::mutex> lck(mtx);
while (cv.wait_for(lck,std::chrono::seconds(1)) == std::cv_status::timeout) {
std::cout << '.';
std::cout.flush();
} std::cout << "You entered: " << value << '\n'; th.join();
return 0;
}
std::condition_variable::wait_until 介绍
unconditional (1) |
template <class Clock, class Duration> |
---|---|
predicate (2) |
template <class Clock, class Duration, class Predicate> |
与 std::condition_variable::wait_for 类似,但是 wait_until 可以指定一个时间点,在当前线程收到通知或者指定的时间点 abs_time 超时之前,该线程都会处于阻塞状态。而一旦超时或者收到了其他线程的通知,wait_until 返回,剩下的处理步骤和 wait_until() 类似。
另外,wait_until 的重载版本(predicte(2))的最后一个参数 pred 表示 wait_until 的预测条件,只有当 pred 条件为 false 时调用 wait() 才会阻塞当前线程,并且在收到其他线程的通知后只有当 pred 为 true 时才会被解除阻塞,因此相当于如下代码:
while (!pred())
if ( wait_until(lck,abs_time) == cv_status::timeout)
return pred();
return true;
std::condition_variable::notify_one() 介绍
唤醒某个等待(wait)线程。如果当前没有等待线程,则该函数什么也不做,如果同时存在多个等待线程,则唤醒某个线程是不确定的(unspecified)。
请看下例(参考):
#include <iostream> // std::cout
#include <thread> // std::thread
#include <mutex> // std::mutex, std::unique_lock
#include <condition_variable> // std::condition_variable std::mutex mtx;
std::condition_variable cv; int cargo = 0; // shared value by producers and consumers void consumer()
{
std::unique_lock < std::mutex > lck(mtx);
while (cargo == 0)
cv.wait(lck);
std::cout << cargo << '\n';
cargo = 0;
} void producer(int id)
{
std::unique_lock < std::mutex > lck(mtx);
cargo = id;
cv.notify_one();
} int main()
{
std::thread consumers[10], producers[10]; // spawn 10 consumers and 10 producers:
for (int i = 0; i < 10; ++i) {
consumers[i] = std::thread(consumer);
producers[i] = std::thread(producer, i + 1);
} // join them back:
for (int i = 0; i < 10; ++i) {
producers[i].join();
consumers[i].join();
} return 0;
}
std::condition_variable::notify_all() 介绍
唤醒所有的等待(wait)线程。如果当前没有等待线程,则该函数什么也不做。请看下面的例子:
#include <iostream> // std::cout
#include <thread> // std::thread
#include <mutex> // std::mutex, std::unique_lock
#include <condition_variable> // std::condition_variable std::mutex mtx; // 全局互斥锁.
std::condition_variable cv; // 全局条件变量.
bool ready = false; // 全局标志位. void do_print_id(int id)
{
std::unique_lock <std::mutex> lck(mtx);
while (!ready) // 如果标志位不为 true, 则等待...
cv.wait(lck); // 当前线程被阻塞, 当全局标志位变为 true 之后,
// 线程被唤醒, 继续往下执行打印线程编号id.
std::cout << "thread " << id << '\n';
} void go()
{
std::unique_lock <std::mutex> lck(mtx);
ready = true; // 设置全局标志位为 true.
cv.notify_all(); // 唤醒所有线程.
} int main()
{
std::thread threads[10];
// spawn 10 threads:
for (int i = 0; i < 10; ++i)
threads[i] = std::thread(do_print_id, i); std::cout << "10 threads ready to race...\n";
go(); // go! for (auto & th:threads)
th.join(); return 0;
}
std::condition_variable_any 介绍
与 std::condition_variable 类似,只不过 std::condition_variable_any 的 wait 函数可以接受任何 lockable 参数,而 std::condition_variable 只能接受 std::unique_lock<std::mutex> 类型的参数,除此以外,和 std::condition_variable 几乎完全一样。
std::cv_status 枚举类型介绍
cv_status::no_timeout | wait_for 或者 wait_until 没有超时,即在规定的时间段内线程收到了通知。 |
cv_status::timeout | wait_for 或者 wait_until 超时。 |
std::notify_all_at_thread_exit
函数原型为:
void notify_all_at_thread_exit (condition_variable& cond, unique_lock<mutex> lck);
当调用该函数的线程退出时,所有在 cond 条件变量上等待的线程都会收到通知。请看下例(参考):
#include <iostream> // std::cout
#include <thread> // std::thread
#include <mutex> // std::mutex, std::unique_lock
#include <condition_variable> // std::condition_variable std::mutex mtx;
std::condition_variable cv;
bool ready = false; void print_id (int id) {
std::unique_lock<std::mutex> lck(mtx);
while (!ready) cv.wait(lck);
// ...
std::cout << "thread " << id << '\n';
} void go() {
std::unique_lock<std::mutex> lck(mtx);
std::notify_all_at_thread_exit(cv,std::move(lck));
ready = true;
} int main ()
{
std::thread threads[10];
// spawn 10 threads:
for (int i=0; i<10; ++i)
threads[i] = std::thread(print_id,i);
std::cout << "10 threads ready to race...\n"; std::thread(go).detach(); // go! for (auto& th : threads) th.join(); return 0;
}
好了,到此为止,<condition_variable> 头文件中的两个条件变量类(std::condition_variable 和 std::condition_variable_any)、枚举类型(std::cv_status)、以及辅助函数(std::notify_all_at_thread_exit())都已经介绍完了。从下一章开始我会逐步开始介绍 <atomic> 头文件中的内容,后续的文章还会介绍 C++11 的内存模型,涉及内容稍微底层一些,希望大家能够保持兴趣,学完 C++11 并发编程,如果你发现本文中的错误,也请给我反馈 ;-)。
上文来自:http://www.cnblogs.com/haippy/p/3252041.html
转 C++11 并发指南std::condition_variable详解的更多相关文章
- C++11 并发指南------std::thread 详解
参考: https://github.com/forhappy/Cplusplus-Concurrency-In-Practice/blob/master/zh/chapter3-Thread/Int ...
- C++11 并发指南四(<future> 详解二 std::packaged_task 介绍)
上一讲<C++11 并发指南四(<future> 详解一 std::promise 介绍)>主要介绍了 <future> 头文件中的 std::promise 类, ...
- C++11 并发指南四(<future> 详解三 std::future & std::shared_future)
上一讲<C++11 并发指南四(<future> 详解二 std::packaged_task 介绍)>主要介绍了 <future> 头文件中的 std::pack ...
- C++11 并发指南四(<future> 详解三 std::future & std::shared_future)(转)
上一讲<C++11 并发指南四(<future> 详解二 std::packaged_task 介绍)>主要介绍了 <future> 头文件中的 std::pack ...
- C++11 并发指南三(Lock 详解)(转载)
multithreading 多线程 C++11 C++11多线程基本使用 C++11 并发指南三(Lock 详解) 在 <C++11 并发指南三(std::mutex 详解)>一文中我们 ...
- C++11 并发指南四(<future> 详解一 std::promise 介绍)
前面两讲<C++11 并发指南二(std::thread 详解)>,<C++11 并发指南三(std::mutex 详解)>分别介绍了 std::thread 和 std::m ...
- C++11 并发指南四(<future> 详解一 std::promise 介绍)(转)
前面两讲<C++11 并发指南二(std::thread 详解)>,<C++11 并发指南三(std::mutex 详解)>分别介绍了 std::thread 和 std::m ...
- C++11 并发指南三(Lock 详解)
在 <C++11 并发指南三(std::mutex 详解)>一文中我们主要介绍了 C++11 标准中的互斥量(Mutex),并简单介绍了一下两种锁类型.本节将详细介绍一下 C++11 标准 ...
- C++11 并发指南五(std::condition_variable 详解)
前面三讲<C++11 并发指南二(std::thread 详解)>,<C++11 并发指南三(std::mutex 详解)>分别介绍了 std::thread,std::mut ...
随机推荐
- CCF ISBN号码 201312-2
ISBN号码 问题描述 试题编号: 201312-2 试题名称: ISBN号码 时间限制: 1.0s 内存限制: 256.0MB 问题描述: 问题描述 每一本正式出版的图书都有一个ISBN号码与之对应 ...
- 006.ASP.NET MVC ActionResults说明
原文:http://rachelappel.com/asp.net-mvc-actiohttp://i.cnblogs.com/EditPosts.aspx?postid=3857238&up ...
- ASP.NET MVC4 新手入门教程特别篇之一----Code First Migrations更新数据库结构(数据迁移)修改Entity FrameWork 数据结构(不删除数据)
背景 code first起初当修改model后,要持久化至数据库中时,总要把原数据库给删除掉再创建(DropCreateDatabaseIfModelChanges),此时就会产生一个问题,当我们的 ...
- Java API 之 Annotation功能
JDK1.5开始增加了Annotation功能,该功能可用于: 1.类: 2.构造方法: 3.成员变量: 4.方法 5.参数 等的声明: 该功能并不影响程序的运行,但是会对编译器警告等辅助工具产生影响 ...
- Java基础(十)数据结构
一.数据结构 1.数据结构的定义 数据结构是计算机存储,组织数据的方式.数据结构是指相互之间存在一种或多种特定关系的数据元素的集合.通常情况下,精心选择的数据结构可以带来更高的运行或存储效率.数据结构 ...
- [转载]hive中order by,sort by, distribute by, cluster by作用以及用法
1. order by Hive中的order by跟传统的sql语言中的order by作用是一样的,会对查询的结果做一次全局排序,所以说,只有hive的sql中制定了order by所有的 ...
- Codeforces Round #416 (Div. 2) A+B
A. Vladik and Courtesy 2 seconds 256 megabytes At regular competition Vladik and Valera won a and ...
- MARS3.6 Programming
An Assembly Language I.D.E. To Engage Students Of All Levels * A Tutorial *2007 CCSC: Central Plains ...
- 如何在VS2010环境下编译C++程序
原文:http://blog.csdn.net/gupengnina/article/details/7441203 用 Visual Studio 编写 Visual C++ 程序的第一步是选择项目 ...
- Python3.5 使用Sqlite3
-------------------- 修雨轩陈@cnblog Python3.5 使用Sqlite3 python3.5 安装的时候会有很多可选参数,这些参数是默认不提供的,可是当我们想通过pip ...