hdu-1695 GCD---容斥定理
题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=1695
题目大意:
求解区间[1, n]和[1, m]中有多少对不同的x和y使得gcd(x, y) == k
其中x=5 y=7和x=7 y=5是同一对
解题思路:
首先如果gcd为k说明[1, n]中只有k的倍数为x,同理在[1, m]中也只有k的倍数为y。
所以如果先特判,k=0或者k>n或者k>m都是不存在解的情况。
之后n /= k, m /= k,这是之选出k的倍数,作为x和y,并且gcd(x, y) = k,就是等价于求在现在的1-n区间和1-m区间中求互质对数。
还需考虑重复的情况,所以枚举m的时候求区间[m, n]与m互质的数,这样不会重复枚举。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn = 1e6 + ;
ll a[], tot;
ll gcd(ll a, ll b)
{
return b == ? a : gcd(b, a % b);
}
void init(ll n)//求出n的素因子
{
tot = ;
for(ll i = ; i * i <= n; i++)
{
if(n % i == )
{
a[tot++] = i;
while(n % i == )n /= i;
}
}
if(n != )a[tot++] = n;
}
ll sum(ll m)//求[1, m]中与n互质的个数
{
ll ans = ;
for(int i = ; i < ( << tot); i++)//a数组的子集
{
ll num = ;
for(int j = i; j; j >>= )if(j & )num++;//统计i的二进制中1的个数
ll lcm = ;
for(int j = ; j < tot; j++)
if(( << j) & i)
{
lcm = lcm / gcd(lcm, a[j]) * a[j];
if(lcm > m)break;
}
if(num & )ans += m / lcm;//奇数加上
else ans -= m / lcm;//偶数减去
}
return m - ans;
}
int main()
{
int T, cases = , a, b, n, m, k;
cin >> T;
while(T--)
{
ll ans;
scanf("%d%d%d%d%d", &a, &n, &b, &m, &k);
if(k == || n < k || m < k)ans = ;
else
{
n /= k, m /= k;
if(n < m)swap(n, m);
ans = n;
for(int i = ; i <= m; i++)
{
init(i);
//cout<<ans<<endl;
ans += sum(n) - sum(i - );
}
}
cout<<"Case "<<++cases<<": "<<ans<<endl;
}
return ;
}
hdu-1695 GCD---容斥定理的更多相关文章
- HDU 1695 GCD 容斥
GCD 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=1695 Description Given 5 integers: a, b, c, d, k ...
- hdu 1695 GCD 容斥+欧拉函数
题目链接 求 $ x\in[1, a] , y \in [1, b] $ 内 \(gcd(x, y) = k\)的(x, y)的对数. 问题等价于$ x\in[1, a/k] , y \in [1, ...
- HDU - 1695 GCD (容斥+枚举)
题意:求区间1<=i<=b与区间1<=j<=d之间满足gcd(i,j) = k 的数对 (i,j) 个数.(i,j)与(j,i) 算一个. 分析:gcd(i,j)=k可以转化为 ...
- HDU - 4135 Co-prime 容斥定理
题意:给定区间和n,求区间中与n互素的数的个数, . 思路:利用容斥定理求得先求得区间与n互素的数的个数,设表示区间中与n互素的数的个数, 那么区间中与n互素的数的个数等于.详细分析见求指定区间内与n ...
- HDU 5514 Frogs 容斥定理
Frogs Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5514 De ...
- 【hdu-2588】GCD(容斥定理+欧拉函数+GCD()原理)
GCD Time Limit : 2000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other) Total Submissio ...
- HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...
- HDU 1695 GCD(容斥定理)
GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
- hdu 6053 trick gcd 容斥
http://acm.hdu.edu.cn/showproblem.php?pid=6053 题意:给定一个数组,我们定义一个新的数组b满足bi<ai 求满足gcd(b1,b2....bn)&g ...
- HDU 1796How many integers can you find(简单容斥定理)
How many integers can you find Time Limit: 12000/5000 MS (Java/Others) Memory Limit: 65536/32768 ...
随机推荐
- FocusBI: SQL Server内核
关注微信公众号:FocusBI 查看更多文章:加QQ群:808774277 获取学习资料和一起探讨问题. <商业智能教程>pdf下载地址 链接:https://pan.baidu.com/ ...
- 本地IDC机房数据库容灾解决方案
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由腾讯云数据库 TencentDB 发表于云+社区专栏 作者介绍:李明,腾讯云数据库架构师华南区负责人,曾在某专业数据库服务商.51jo ...
- 学习笔记之--认识Xcode中的重要成员:lldb调试器
之前对lldb调试器了解比较少,平时主要用来打印日志和暂定时用鼠标查看属性数据以及使用p po一些简单的命令语句. 今天看了一些关于lldb的文章,顿时觉得之前对它了解太少了,原来它还有那么多的功能. ...
- JS 提交反斜杠\替换成正斜杠/
js将字符串中所有反斜杠\替换成正斜杠/ 区分正斜杠与反斜杠: 正斜杠:http://.http紧跟着的斜杠,离手输入最近的斜杠,shift中间斜杠.45度角斜杠.正斜杠不需要转义 反斜杠:回车与空格 ...
- linux 忘记密码
密码保存在/etc/shadow文件中 1. root 密码忘记了 1.1 重启进入单人维护模式后, 系统会主动给予root权限的bash接口, 此时再以passwd修改密码即可: 1.2 以Live ...
- log在无法调试代码时的妙用
1. 如果修改源代码 通过加入log打印日志 可以判断程序走的流程 找到需要自定义修改的位置(如修改java编写的项目 ApacheDS ) 2. 如果java调用dll文件 出错了 排错的方式也可以 ...
- (1-1)line-height的定义和行内框盒子模型
(1-1)line-height的定义和与行内框盒子模型的关系 一.line-height的定义 line-height的定义: 行高,又称为两基线的距离.默认基线对齐(因为CSS所有*线:总之就是各 ...
- Java的异常处理throw和throws的区别
区别一: throw 是语句抛出一个异常:throws 是方法抛出一个异常: throw语法:throw <异常对象> ...
- SQL Server中的游标CURSOR
游标是邪恶的! 在关系数据库中,我们对于查询的思考是面向集合的.而游标打破了这一规则,游标使得我们思考方式变为逐行进行.对于类C的开发人员来着,这样的思考方式会更加舒服. 正常面向集合的思维方式是: ...
- iOS线程和进程的区别和联系
线程和进程的区别主要在于它们是不同的操作系统资源管理方式.进程有独立的地址空间,一个进程崩溃后,在保护模式的影响下不会对其他进程产生影响,而线程只是一个进程中的不同执行路径.线程有自己的堆栈和局部变量 ...