转:http://hi.baidu.com/chb_seaok/item/faa54786a3ddd1d7d1f8cd0b

在常见的降维方法中,PCA和LDA是最为常用的两种降维方法。PCA是一种无监督方法,它关注的是将数据沿着方差最大化的方向映射。而LDA是一种监督方法,它寻找映射轴(类之间耦合度低,类内的聚合度高),两种方法估计的都是全局的统计信息(均值和协方差)。

manifold learning是最近比较热门的领域,它是一种非线性降维技术,主要研究的是高维数据的潜在的流行结构。首先我们来看下为什么要进行流行学习,先看经典图:

图1

数据在高维空间空间中,什么事合理的距离度量(两个点之间的距离)成了关键,如图1,如果我们用欧式距离分别来度量图中红点与蓝点和黄点的距离的话,红点与蓝点的距离应该较红点与黄点距离远。事实上是否如此的,该距离是否真实的反应了数据之间的距离关系呢?想象力丰富的同学可能可以看出来,这些数据像一条丝带,把他在一个平面内展开,再去度量红点与蓝点和黄点的距离是否更为合理些?

ISOMAP是manifold learning的最为常见的一种方法,它主要的思想是用n维的欧式空间近似于一个N维的流行(n<<N).

第一步:构建点的邻居

图2

用KNN最近邻居算法对高维数据构建一个稀疏图,如果是该点邻居,则添加一条边,两点之间的距离则为欧式距离。

第二步:根据构建的图计算点与点之间最短距离

注:我们用点与点之间最短距离近似于geodesic距离(根据weak bound和asymptotic convergence定理)

计算最短路用Dijkstra或者Floyd算法计算,得到一个距离矩阵M,(表示的是点与点之间的距离)

图3

第三步:高维数据映射到低维空间

建立一个损失函数:

注:DG代表原图中数据,DY代表映射后数据

为了使E尽量小,解决的方法类似于PCA,进行矩阵分解,取前P个特征根,也就是将数据映射到P维空间。

PCA分解的是协方差矩阵,而ISOMAP也要进行类似的处理。在第二步中我们计算出距离矩阵M,对M进行算子操作,

= (1)

(2)

注:N为样本数据点个数,克罗内克函数.

该步的算子操作类似于PCA中的减去均值操作,然后进行矩阵分解,取前P个特征根。

至此,ISOMAP完成了高维数据的非线性降维,降维后的数据极大的保持全局的geodesic距离信息。

Manifold Learning: ISOMAP的更多相关文章

  1. 流形学习(manifold learning)综述

    原文地址:https://blog.csdn.net/dllian/article/details/7472916 假设数据是均匀采样于一个高维欧氏空间中的低维流形,流形学习就是从高维采样数据中恢复低 ...

  2. 转载manifold learning一篇

    我恨自己不干活儿,不过也没辙. 早晚要学习流形的,今天先转一篇文章,以后找不到就尿了. 我真羡慕数学系的人,╮(╯▽╰)╭. 发信人: Kordan (K&M), 信区: AI标  题: do ...

  3. 流形学习 (Manifold Learning)

    流形学习 (manifold learning) zz from prfans............................... dodo:流形学习 (manifold learning) ...

  4. Manifold learning 流形学习

    Machine Learning 虽然名字里带了 Learning 一个词,让人乍一看觉得和 Intelligence 相比不过是换了个说法而已,然而事实上这里的 Learning 的意义要朴素得多. ...

  5. 流形学习(manifold learning)的一些综述

    流形学习(manifold learning)的一些综述 讨论与进展 issue 26 https://github.com/memect/hao/issues/26 Introduction htt ...

  6. 机器学习算法总结(十二)——流形学习(Manifold Learning)

    1.什么是流形 流形学习的观点:认为我们所能观察到的数据实际上是由一个低维流行映射到高维空间的.由于数据内部特征的限制,一些高维中的数据会产生维度上的冗余,实际上这些数据只要比较低的维度就能唯一的表示 ...

  7. sklearn 下的流行学习(Manifold Learning)—— sklearn.manifold

    1. t-SNE from sklearn.manifold import TSNE X_proj = TSNE(random_state=123).fit_transform(X) 2. t_sne ...

  8. manifold learning

    MDS, multidimensional scaling, 线性降维方法, 目的就是使得降维之后的点两两之间的距离尽量不变(也就是和在原是空间中对应的两个点之间的距离要差不多).只是 MDS 是针对 ...

  9. 流行-Manifold学习理解与应用

    流行-Manifold[1]  流形,也就是 Manifold . 1. 比较好的形象理解 流形学习的观点是认为,我们所能观察到的数据实际上是由一个低维流形映射到高维空间上的,即这些数据所在的空间是“ ...

随机推荐

  1. Java调用打印机打印指定路径图片

    依赖 javax.print package com.xgt.util; import org.apache.commons.io.IOUtils; import org.slf4j.Logger; ...

  2. 多线程FTP下载日志脚本

    #!/bin/bash ip_list=`cat $1` thead_num=5tmp_fifofile="/tmp/$$.fifo"mkfifo "$tmp_fifof ...

  3. Magento 2开发教程 - 创建新模块

    视频在youtube网站国内访问不了,可以使用FQ软件查看. 视频地址:www.youtube.com/embed/682p52tFcmY@autoplay=1 下面是视频文字介绍: Magento ...

  4. api下载文件

    net /// <summary> ///字符流下载方法 /// </summary> /// <param name="fileName">下 ...

  5. Expression Blend实例中文教程(3) - 布局控件快速入门Grid

    上一篇对Blend 3开发界面进行了快速入门介绍,本篇将基于Blend 3介绍Silverlight控件.对于微软开发工具熟悉的朋友,相信您很快就熟悉Blend的开发界面和控件. XAML概述 Sil ...

  6. mac os下载安装jmeter

    一.简介 jmeter是属于apache的一个开源产品,纯Java应用.最初用来进行功能测试,而后又扩展了更多的测试功能. 二.下载 进入apache的jmeter下载页:http://jmeter. ...

  7. 八、profile多环境配置

    通常我们的程序有着多个环境: 1.开发环境: 2.生产环境. 等 环境的配置各不相同,我们希望通过一个简单的配置来切换环境,而springboot轻松地实现了该功能: 一.多环境需要多配置文件 一般我 ...

  8. Boxlayout中button改变大小

    需要先设置maximunsize neuStart.setBorder(BorderFactory.createRaisedBevelBorder()); neuStart.setMaximumSiz ...

  9. 重构指南 - 为布尔方法命名(Rename boolean method)

    如果一个方法中包含多个布尔类型的参数,一是方法不容易理解,二是调用时容易出错. 重构前代码 public class BankAccount { public void CreateAccount(C ...

  10. Maven打包时,不包含jar包

    在给Maven项目打war包时,如果不想把依赖中的jar包也包含进去,可以在plugins中加入 <span style="white-space:pre"> < ...