fail-fast机制即为快速失败机制,个人认为是一种防护措施,在集合结构发生改变的时候,使尽全力抛出ConcurrentModificationException,所以该机制大部分用途都是用来检测Bug的;

下面的代码可以引发fail-fast

     public static void main(String[] args) {
List<String> list = new ArrayList<>();
for (int i = 0 ; i < 10 ; i++ ) {
list.add(i + "");
}
Iterator<String> iterator = list.iterator();
int i = 0 ;
while(iterator.hasNext()) {
if (i == 3) {
list.remove(3);
//list.add("11"); 添加元素同样会引发
}
System.out.println(iterator.next());
i ++;
}
}

fail-fast原理

每个集合都会实现可遍历的接口,以上述代码为例,集合调用iterator();方法的时候,其实是返回了一个new Itr();

    /**
* Returns an iterator over the elements in this list in proper sequence.
*
* <p>The returned iterator is <a href="#fail-fast"><i>fail-fast</i></a>.
*
* @return an iterator over the elements in this list in proper sequence
*/
public Iterator<E> iterator() {
return new Itr();
}

以下是Itr源码

    /**
* An optimized version of AbstractList.Itr
*/
private class Itr implements Iterator<E> {
int cursor; // index of next element to return
int lastRet = -1; // index of last element returned; -1 if no such
int expectedModCount = modCount; public boolean hasNext() {
return cursor != size;
} @SuppressWarnings("unchecked")
public E next() {
checkForComodification();
int i = cursor;
if (i >= size)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i + 1;
return (E) elementData[lastRet = i];
} public void remove() {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification(); try {
ArrayList.this.remove(lastRet);
cursor = lastRet;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
} @Override
@SuppressWarnings("unchecked")
public void forEachRemaining(Consumer<? super E> consumer) {
Objects.requireNonNull(consumer);
final int size = ArrayList.this.size;
int i = cursor;
if (i >= size) {
return;
}
final Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length) {
throw new ConcurrentModificationException();
}
while (i != size && modCount == expectedModCount) {
consumer.accept((E) elementData[i++]);
}
// update once at end of iteration to reduce heap write traffic
cursor = i;
lastRet = i - 1;
checkForComodification();
} final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}

Itr有3个重要属性;

cursor是指集合遍历过程中的即将遍历的元素的索引

lastRet是cursor -1,默认为-1,即不存在上一个时,为-1,它主要用于记录刚刚遍历过的元素的索引。

expectedModCount它初始值就为ArrayList中的modCount(modCount是抽象类AbstractList中的变量,默认为0,而ArrayList 继承了AbstractList ,所以也有这个变量,modCount用于记录集合操作过程中作的修改次数)

由源码可以看出,该异常就是在调用next()的时候引发的,而调用next()方法的时候会先调用checkForComodification(),该方法判断expectedModCount与modCount是否相等,如果不等则抛异常了

那么问题就来了,初始化的时候expectedModCount就被赋值为modCount,而且源码当中就一直没有改变过,所以肯定是modCount的值变了

arrayList继承了abstractList,abstractList有modCount属性,通过以下源码我们可以看到,当ArrayList调用add、remove方法,modCount++

    /**
* Inserts the specified element at the specified position in this
* list. Shifts the element currently at that position (if any) and
* any subsequent elements to the right (adds one to their indices).
*
* @param index index at which the specified element is to be inserted
* @param element element to be inserted
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public void add(int index, E element) {
rangeCheckForAdd(index); ensureCapacityInternal(size + 1); // Increments modCount!!
System.arraycopy(elementData, index, elementData, index + 1,
size - index);
elementData[index] = element;
size++;
} /**
* Removes the element at the specified position in this list.
* Shifts any subsequent elements to the left (subtracts one from their
* indices).
*
* @param index the index of the element to be removed
* @return the element that was removed from the list
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public E remove(int index) {
rangeCheck(index); modCount++;
E oldValue = elementData(index); int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // clear to let GC do its work return oldValue;
}

所以由此可见,对集合的操作中若modCount发生了改变,则会引发fail-fast机制;同时可以看出如果想要移除集合某元素,可以使用迭代器的remove方法,则不会引发fail-fast;

发表该文章也参考了许多另一片文章的内容,详情地址:https://blog.csdn.net/zymx14/article/details/78394464

浅谈fail-fast机制的更多相关文章

  1. 浅谈JVM线程调度机制及主要策略

    在之前有说过线程,应该都知道,所谓线程就是进程中的一个子任务,一个进程有多个线程.今天的话主要就是谈一谈JVM线程调度机制.我们结合线程来说,当我们在做多线程的案例时,如一个经典案例,火车站卖票. * ...

  2. 浅谈java发射机制

    目录 什么是反射 初探 初始化 类 构造函数 属性 方法 总结 思考 什么是反射 JAVA反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法:对于任意一个对象,都能够调用它的任意 ...

  3. 浅谈java反射机制

    目录 什么是反射 初探 初始化 类 构造函数 属性 方法 总结 思考 什么是反射 JAVA反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法:对于任意一个对象,都能够调用它的任意 ...

  4. 浅谈android binder机制

    binder机制 是谷歌优化在android上更适合终端的IPC(多进程通信方式),满足系统对通信方式,传输性能和安全性的要求. 特性: 1. 用驱动程序来推进进程间的通信.2. 通过共享内存来提高性 ...

  5. 浅谈Java回调机制

    像许多网上介绍回调机制的文章一样,我这里也以一个现实的例子开头:假设你公司的总经理出差前需要你帮他办件事情,这件事情你需要花些时间去做,这时候总经理肯定不能守着你做完再出差吧,于是就他告诉你他的手机号 ...

  6. 浅谈java编译机制和运行机制

    源文件和字节码的组成方式 源文件: 拓展名后跟java的文件即java的源文件. Java 源码编译由以下三个过程组成: 1.分析和输入到符号表 2.注解处理 3.语义分析和生成class文件 流程图 ...

  7. 浅谈利用同步机制解决Java中的线程安全问题

    我们知道大多数程序都不会是单线程程序,单线程程序的功能非常有限,我们假设一下所有的程序都是单线程程序,那么会带来怎样的结果呢?假如淘宝是单线程程序,一直都只能一个一个用户去访问,你要在网上买东西还得等 ...

  8. 浅谈 java 反射机制

    一:Java反射概念 Java反射是Java被视为动态(或准动态)语言的一个关键性质.这个机制允许程序在运行时透过Reflection APIs取得任何一个已知名称的class的内部信息,包括其mod ...

  9. 浅谈ecmall插件机制

    插件是独立于原系统的程序模块,目的是在不修改原程序的情况下对系统进行扩展,便于修改和管理.目前web开发中大多是使用钩子形式来定义插件, 比较典型的有 wordpress, drupal系统 ecma ...

  10. 浅谈MapReduce工作机制

    1.MapTask工作机制 整个map阶段流程大体如上图所示.简单概述:input File通过getSplits被逻辑切分为多个split文件,通通过RecordReader(默认使用lineRec ...

随机推荐

  1. Linux中nmon的安装与使用

    一.下载nmon. 根据CPU的类型选择下载相应的版本:http://nmon.sourceforge.net/pmwiki.php?n=Site.Downloadwget http://source ...

  2. call/apply

    call与apply都可以改变this指向,但是传参列表不同. call 任何一种方法都可以.call,借用别人函数,自己用. call只需把实参按照形参的个数传进去,apply只能传一个argume ...

  3. 笔记,记事软件(RedbookNote, lifeopraph)

    许多人重视记日记是因为它是一种以天为基础保存个人或商务信息的良好方式:持续跟踪每天的生活和思想上的点点滴滴,组织和巩固记忆.思考.商业交易.电子邮件.账单.未来计划.联系人列表,甚至是秘密信息.Lin ...

  4. 51nod 1837 砝码称重【数学,规律】

    题目链接:51nod 1837 砝码称重 小 Q 有 n 个砝码,它们的质量分别为 1 克. 2 克.……. n 克. 他给 i 克的砝码标上了编号 i (i = 1, 2, ..., n),但是编号 ...

  5. websphere 配置库中已存在应用程序,异常处理

    from:http://mengdboy.iteye.com/blog/1677379 出现此问题的原因之一:操作界面上没有卸载完成. 进行一下操作: 1.删除 $WAS_HOME/profiles/ ...

  6. JSON解析问题

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/quanqinayng/article/details/25121955 这是data.chatFil ...

  7. JQuery的异步回调支持 - Promise、Deferred

    1.Deferred对象: 一般在函数内部进行声明,并在运行过程中改变其状态,例如成功或失败,最终返回Promise对象用于状态监听. 主要方法: Deferred.resolve(param...) ...

  8. Mac OS系统下配置hosts的方法

    首先,介绍下什么是hosts Hosts是一个没有扩展名的系统文件,可以用系统自带的记事本等工具打开,作用就是将一些常用的网址域名与其对应的IP地址建立一个关联,当用户在浏览器输入一个需要登录的网址时 ...

  9. php模板引擎的原理与简单实例

    模板引擎其实就是将一个带有自定义标签的字符串,通过相应的规则解析,返回php可以解析的字符串,这其中正则的运用是必不可少的,所以要有一定的正则基础.总体思想,引入按规则写好的模板,传递给标签解析类(_ ...

  10. Kali-linux识别活跃的主机

    尝试渗透测试之前,必须先识别在这个目标网络内活跃的主机.在一个目标网络内,最简单的方法将是执行ping命令.当然,它可能被一个主机拒绝,也可能被接收.本节将介绍使用Nmap工具识别活跃的主机. 网络映 ...