[POJ2553]The Bottom of a Graph
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 11182   Accepted: 4608

Description

We will use the following (standard) definitions from graph theory. Let V be a nonempty and finite set, its elements being called vertices (or nodes). Let E be a subset of the Cartesian product V×V, its elements being called edges. Then G=(V,E) is called a directed graph. 
Let n be a positive integer, and let p=(e1,...,en) be a sequence of length n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices (v1,...,vn+1). Then p is called a path from vertex v1 to vertex vn+1 in G and we say that vn+1 is reachable from v1, writing (v1→vn+1)
Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from vv is also reachable from w. The bottom of a graph is the subset of all nodes that are sinks, i.e., bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.

Input

The input contains several test cases, each of which corresponds to a directed graph G. Each test case starts with an integer number v, denoting the number of vertices of G=(V,E), where the vertices will be identified by the integer numbers in the set V={1,...,v}. You may assume that 1<=v<=5000. That is followed by a non-negative integer e and, thereafter, e pairs of vertex identifiers v1,w1,...,ve,we with the meaning that (vi,wi)∈E. There are no edges other than specified by these pairs. The last test case is followed by a zero.

Output

For each test case output the bottom of the specified graph on a single line. To this end, print the numbers of all nodes that are sinks in sorted order separated by a single space character. If the bottom is empty, print an empty line.

Sample Input

3 3
1 3 2 3 3 1
2 1
1 2
0

Sample Output

1 3
2

Source

 
题目大意:输出有哪些点在有向图中满足它能到达的点都可以到它
试题分析:缩点后输出出度为0的强联通分量中的点即可。
 
代码:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<stack>
#include<algorithm>
using namespace std; inline int read(){
int x=0,f=1;char c=getchar();
for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
for(;isdigit(c);c=getchar()) x=x*10+c-'0';
return x*f;
}
const int MAXN=5101;
const int INF=999999;
int N,M;
vector<int> vec[MAXN];
bool inq[MAXN];
int que[MAXN];
int dfn[MAXN],low[MAXN];
int tar[MAXN];
bool oud[MAXN];
int tot,Col,tmp; void Tarjan(int x){
tot++;
dfn[x]=low[x]=tot;
que[++tmp]=x;
inq[x]=true;
for(int i=0;i<vec[x].size();i++){
int to=vec[x][i];
if(!dfn[to]){
Tarjan(to);
low[x]=min(low[x],low[to]);
}
else if(inq[to]) low[x]=min(low[x],dfn[to]);
}
if(dfn[x]==low[x]){
++Col; tar[x]=Col;
inq[x]=false;
while(x!=que[tmp]){
int k=que[tmp];
tar[k]=Col;
inq[k]=false;
tmp--;
}
tmp--;
}
return ;
}
vector<int> vec2[MAXN];
int ans[MAXN];
int ans2[MAXN];
int atmp,atmp2;
int main(){
while(1){
N=read(); if(!N) break;
M=read();
memset(inq,false,sizeof(inq));
memset(oud,false,sizeof(oud));
atmp=atmp2=0;
memset(dfn,0,sizeof(dfn));
tmp=0,Col=0,tot=0;
memset(tar,0,sizeof(tar));
for(int i=1;i<=N;i++) vec[i].clear(),vec2[i].clear();
for(int i=1;i<=M;i++){
int u=read(),v=read();
vec[u].push_back(v);
}
for(int i=1;i<=N;i++) if(!dfn[i]) Tarjan(i);
for(int i=1;i<=N;i++){
//size[tar[i]]++;
vec2[tar[i]].push_back(i);
for(int j=0;j<vec[i].size();j++){
if(tar[i]!=tar[vec[i][j]])
oud[tar[i]]=true;
}
}
for(int i=1;i<=Col;i++){
if(!oud[i]) ans[++atmp]=i;
}
for(int i=1;i<=atmp;i++){
for(int j=0;j<vec2[ans[i]].size();j++){
ans2[++atmp2]=vec2[ans[i]][j];
}
}
sort(ans2+1,ans2+atmp2+1);
for(int i=1;i<atmp2;i++) printf("%d ",ans2[i]);
printf("%d\n",ans2[atmp2]);
}
}

【图论】The Bottom of a Graph的更多相关文章

  1. The Bottom of a Graph(tarjan + 缩点)

    The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 9139   Accepted:  ...

  2. poj 2553 The Bottom of a Graph(强连通分量+缩点)

    题目地址:http://poj.org/problem?id=2553 The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K ...

  3. poj 2553 The Bottom of a Graph【强连通分量求汇点个数】

    The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 9641   Accepted:  ...

  4. POJ 2553 The Bottom of a Graph (Tarjan)

    The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 11981   Accepted: ...

  5. The Bottom of a Graph

                                    poj——The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K ...

  6. POJ 2553 The Bottom of a Graph(强连通分量)

    POJ 2553 The Bottom of a Graph 题目链接 题意:给定一个有向图,求出度为0的强连通分量 思路:缩点搞就可以 代码: #include <cstdio> #in ...

  7. poj--2553--The Bottom of a Graph (scc+缩点)

    The Bottom of a Graph Time Limit : 6000/3000ms (Java/Other)   Memory Limit : 131072/65536K (Java/Oth ...

  8. POJ——T2553 The Bottom of a Graph

    http://poj.org/problem?id=2553 Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 10987   ...

  9. POJ-2552-The Bottom of a Graph 强连通分量

    链接: https://vjudge.net/problem/POJ-2553 题意: We will use the following (standard) definitions from gr ...

随机推荐

  1. 【转载】Quick-Cocos2d-x文件结构分析

    在上一章我们讲过了Quick-Cocos2d-x中的环境搭建,这章我们分析下quick中的文件结构吧!打开quick的文件夹,可以看到如下的这些目录和文件: bin:存放各种与引擎相关的脚本 comp ...

  2. Transformation(线段树+HDU4578+多种操作+鬼畜的代码)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4578 题目: 题意:n个数初始值为0,进行四种操作:1.将区间内的数字加c:2.将区间内的数字乘c:3 ...

  3. FZUOJ 2205 据说题目很水 (无三元环图最大边数)

    Problem Description Sunday最近对图论特别感兴趣,什么欧拉回路什么哈密顿回路,又是环又是树.在看完一本书后,他对自己特别有信心,便找到大牛牛犇犇,希望他出一题来考考自己. 在遥 ...

  4. HTML中设置超链接字体 & 字体颜色

    定义链接样式 CSS为一些特殊效果准备了特定的工具,我们称之为“伪类”.其中有几项是我们经常用到的,下面我们就详细介绍一下经常用于定义链接样式的四个伪类,它们分别是: :link :visited : ...

  5. 7.0docker镜像和仓库

    repository:镜像的仓库 registry :docker组件的仓库,docker镜像的存储服务 tag :镜像的标签 例:ubuntu:14.04  ubuntu:latest 删除镜像 d ...

  6. chrome://settings/content

    chrome://settings/content C:\Users\用户名\AppData\Roaming\Microsoft\Internet Explorer chrome://version/

  7. 64_a1

    AGReader-1.2-16.fc26.x86_64.rpm 13-Feb-2017 23:31 50654 ATpy-0.9.7-11.fc26.noarch.rpm 13-Feb-2017 22 ...

  8. 解决sql server中批处理过程中“'CREATE/ALTER PROCEDURE 必须是查询批次中的第一个语句”

    在批处理中加字段或表或视图或存储过程是否存在的判断 -----------------------------------------line----------------------------- ...

  9. Oracle 表连接方式

    1.嵌套循环联结(NESTED LOOPS)2.哈希联结(HASH JOIN)3.排序合并联结(MERGE JOIN)4.半联结(in/exists)5.反联结(not in/not exists)6 ...

  10. [LabVIEW架构]ActorFramework(二)

    前言 在上一个文章中,我们介绍了一下LabVIEW中AF的基本概念,本讲将以上一次的例子来讲解LabVIEW中的实现 正文 范例说明 假定两个人,一个作为老师,一个作为学生.学生每天早上给老师发送一封 ...