P4018 Roy&October之取石子

题目背景

Roy和October两人在玩一个取石子的游戏。

题目描述

游戏规则是这样的:共有n个石子,两人每次都只能取p^kpk个(p为质数,k为自然数,且p^kpk小于等于当前剩余石子数),谁取走最后一个石子,谁就赢了。

现在October先取,问她有没有必胜策略。

若她有必胜策略,输出一行"October wins!";否则输出一行"Roy wins!"。

输入输出格式

输入格式:

第一行一个正整数T,表示测试点组数。

第2行~第(T+1)行,一行一个正整数n,表示石子个数。

输出格式:

T行,每行分别为"October wins!"或"Roy wins!"。

输入输出样例

输入样例#1: 复制

3
4
9
14
输出样例#1: 复制

October wins!
October wins!
October wins!

说明

对于30%的数据,1<=n<=30;

对于60%的数据,1<=n<=1,000,000;

对于100%的数据,1<=n<=50,000,000,1<=T<=100,000。

(改编题)

乍一看像是博弈

其实数学归纳法也可以完成这个题目

我们来看下面的表格

棋子的个数 1 2 3 4 5 6 7 8 9
第一个人取得个数 1^1 2^1 3^1 2^2 5^1 2^2 1^1+2^1 2^1+2^1 3^1+2^1
第二个人取得个数 0 0 0 0 0 2^1 2^2 2^2 2^2

当棋子的个数小于等于6的时候,我们可以看到在1~5的时候全是第一个人赢,当n=6是第二个人赢,当7~11内我们可以将数拆成1~5内的一个数想让第一个人拿,然后余出个6,这样第二个人就不可能一次拿完,只能再让第一个人拿一次,这样第一个人必胜,当12时,第二个人赢、、、以此类推,我们可以发现,当n为6的倍数的时候,第二个人赢,其余情况均为第一个人赢

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int T,n;
int read()
{
    ,f=; char ch=getchar();
    ;ch=getchar();}
    +ch-',ch=getchar();
    return x*f;
}
int main()
{
    T=read();
    while(T--)
    {
        n=read();
        ==) printf("Roy wins!\n");
        else printf("October wins!\n");
    }
    ;
}

洛谷——P4018 Roy&October之取石子的更多相关文章

  1. 洛谷 P4018 Roy&October之取石子

    洛谷 P4018 Roy&October之取石子 题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取 p^kpk 个(p为质 ...

  2. 洛谷P4018 Roy&October之取石子

    题目背景 \(Roy\)和\(October\)两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有\(n\)个石子,两人每次都只能取\(p^k\)个(\(p\)为质数,\(k\)为自然数,且 ...

  3. 洛谷P4018 Roy&October之取石子 题解 博弈论

    题目链接:https://www.luogu.org/problem/P4018 首先碰到这道题目还是没有思路,于是寻思还是枚举找一找规律. 然后写了一下代码: #include <bits/s ...

  4. 洛谷P4860 Roy&October之取石子II 题解 博弈论

    题目链接:https://www.luogu.org/problem/P4860 和<P4018 Roy&October之取石子>一样的推导思路,去找循环节. 可以发现:只要不能被 ...

  5. P4018 Roy&October之取石子

    题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取 p^kpk 个(p为质数,k为自然数,且 p^kpk 小于等于当前剩余石子数), ...

  6. luogu P4018 Roy&October之取石子(博弈论)

    题意 题解 如果n是6的倍数,先手必败,否则先手必胜. 因为6*x一定不是pk 所以取得话会变成6*y+a的形式a=1,2,3,4,5: 然后a一定为质数.我们把a取完就又成为了6*x的形式. 又因为 ...

  7. 洛谷 Roy&October之取石子

    题目背景 Roy和October两人在玩一个取石子的游戏. 题目描述 游戏规则是这样的:共有n个石子,两人每次都只能取pk 个(p为质数,k为自然数,且pk小于等于当前剩余石子数),谁取走最后一个石子 ...

  8. [luogu4018][Roy&October之取石子]

    题目链接 思路 这个题思路挺巧妙的. 情况一: 首先如果这堆石子的数量是1~5,那么肯定是先手赢.因为先手可以直接拿走这些石子.如果石子数量恰好是6,那么肯定是后手赢.因为先手无论怎样拿也无法直接拿走 ...

  9. [luogu4860][Roy&October之取石子II]

    题目链接 思路 这个题和上个题类似,仔细推一下就知道这个题是判断是否是4的倍数 代码 #include<cstdio> #include<iostream> #define f ...

随机推荐

  1. redis linux下的开机启动

    redis linux下的环境搭建  http://www.cnblogs.com/zsg88/p/8321644.html 安装完redis-4.0.1后设置linux开机自启动.    1.在re ...

  2. centos6.8+openvpn实现账户密码连接(通过端口映射的方式)

    #搭建openvpn(编译安装) 初始化环境 #update epel mirror yum install wget -y cd /etc/yum.repos.d && rm -rf ...

  3. zk-web

    Ref:https://github.com/qiuxiafei/zk-web zk-web是一个用clojure with noir and boostrap写的Zookeeper WEB UI管理 ...

  4. java 7修改文件权限

    Full control over file attributes is available in Java 7, as part of the "new" New IO faci ...

  5. 小程序_改变switch组件的大小

    微信开发文档中,switch能修改颜色,没有直接修改switch大小的属性.用一般控件height & width来修改宽高是没有用的. 使用如下方法: 在.wxss文件: .wx-switc ...

  6. Runas replacement tool

    1. RunAsSpc Runas 无法在脚本中输入密码,可以使用RunAsSpc替代. RunAsSpc = runas + password + encryption https://robotr ...

  7. Centos7 安装

    一.先把Centos7的镜像下载到本地 镜像下载网址:http://archive.kernel.org/centos-vault/ (里面有任何需要的版本) 二.启动VMware 1. 创建新的虚拟 ...

  8. Leetcode 之Anagrams(35)

    回文构词法,将字母顺序打乱.可将字母重新排序,若它们相等,则属于同一组anagrams. 可通过hashmap来做,将排序后的字母作为key.注意后面取hashmap值时的做法. vector< ...

  9. mysql 服务器配置

    Windows: 1.在bin目录下执行mysqld.exe --install-manual安装服务(删除命令是mysqld.exe --remove) 2.执行net start mysql启动服 ...

  10. Matlab处理数据导出Paraview可读的vtk文件(一)

    Paraview是一个开源的可视化软件. 用到matlab子程序从这里下载 或者到博客末尾复制粘贴 子程序名为 vtkwrite 示例1: load mri D = squeeze(D); vtkwr ...