https://vijos.org/p/1781

学习了下拓欧。。

求exgcd时,因为

a*x1+b*y1=a*x2+b*y2=b*x2+(a-b*[a/b])*y2

然后移项得

a*x1+b*y1=b*x2+a*y2-(b*[a/b])*y2

a*(x1-y2)+b*y1-b*x2+(b*[a/b]*y2)=0

a*(x1-y2)+b*(y1-x2+[a/b]*y2)=0

所以

x1=y2, y1=x2-[a/b]*y2(sigh。。我也不知道为什么诶。难道(x1-y2)等于b且(y1-x2+[a/b]*y2)等于-a的情况不行么)

然后求出一组解x0和y0后因为ax0+by0=ax1+by1移项得a(x0-x1)=b(y1-y0)除以d=gcd(a,b)后,设a0=a/d, b0=b/d,可知a0和b0互质,原式变为

a0(x0-x1)=b0(y1-y0)

因为a0和b0互质,要想等式成立,有x0-x1=b0, y1-y0=a0所以x1=x0-b0=x0-b/d;y1=y0+a0=y0+a/d然后就可以得出所有解啦。。。

回到本题,这题可以转换为ax-by=1等式这可以等同于ax+by=1(只是y的符号变了而已)所以我们用拓欧求出来就行了

而非负整数解x可以由x=(x0+b/gcd(a, b))%(b/gcd(a, b)得到

对于方程ax+by=c我们求出来ax+by=(a,b)后求出原方程的解可以这样做

(从而接触到了“不定方程”这东西,,,这是啥,,,以后有时间看看(《初等数论》上有详细介绍),http://baike.baidu.com/view/375208.htm?fr=aladdin
 
#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
#define printarr1(a, b) for1(_, 1, b) cout << a[_] << '\t'; cout << endl
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } void gcd(int a, int b, int &d, int &x, int &y) {
if(!b) { d=a; x=1; y=0; return; }
gcd(b, a%b, d, y, x); y-=a/b*x;
} int main() {
int a=getint(), b=getint();
int x, y, d;
gcd(a, b, d, x, y);
print((x+b)%b);
return 0;
}

描述

求关于x的同余方程ax ≡ 1 (mod b)的最小正整数解。

格式

输入格式

输入只有一行,包含两个正整数a, b,用一个空格隔开。

输出格式

输出只有一行,包含一个正整数x0,即最小正整数解。输入数据保证一定有解。

样例1

样例输入1[复制]

3 10

样例输出1[复制]

7

限制

每个测试点1s

提示

对于40%的数据,2 ≤b≤ 1,000;
对于60%的数据,2 ≤b≤ 50,000,000;
对于100%的数据,2 ≤a, b≤ 2,000,000,000。

来源

Noip2012提高组复赛Day2T1

【vijos】1781 同余方程(拓展欧几里得)的更多相关文章

  1. NOIP2012 同余方程-拓展欧几里得

    题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正 ...

  2. LuoGuP1516 青蛙的约会 + 同余方程 拓展欧几里得

    题意:有两只青蛙,在一个圆上顺时针跳,问最少的相遇时间.   这个是同余方程的思路.可列出方程:(m-n)* X% L = y-x(mod L) 简化为 a * x = b (mod L)    (1 ...

  3. 【lydsy1407】拓展欧几里得求解不定方程+同余方程

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1407 题意: 有n个野人,野人各自住在第c[i]个山洞中(山洞成环状),每年向前走p[i] ...

  4. Looooops(求解同余方程、同余方程用法)【拓展欧几里得】

    Looooops(点击) A Compiler Mystery: We are given a C-language style for loop of type for (variable = A; ...

  5. POJ 2891 Strange Way to Express Integers(拓展欧几里得)

    Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express ...

  6. BZOJ-1407 Savage 枚举+拓展欧几里得(+中国剩余定理??)

    zky学长实力ACM赛制测试,和 大新闻(YveH) 和 华莱士(hjxcpg) 组队...2h 10T,开始 分工我搞A,大新闻B,华莱士C,于是开搞: 然而第一题巨鬼畜,想了40min发现似乎不可 ...

  7. ACM数论-欧几里得与拓展欧几里得

    ACM数论——欧几里得与拓展欧几里得 欧几里得算法: 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd ...

  8. Vulnerable Kerbals CodeForces - 772C【拓展欧几里得建图+DAG上求最长路】

    根据拓展欧几里得对于同余方程 $ax+by=c$ ,有解的条件是 $(a,b)|c$. 那么对于构造的序列的数,前一个数 $a$  和后一个数 $b$ ,应该满足 $a*x=b(mod m)$ 即 $ ...

  9. HDU-3579-Hello Kiki (利用拓展欧几里得求同余方程组)

    设 ans 为满足前 n - 1个同余方程的解,lcm是前n - 1个同余方程模的最小公倍数,求前n个同余方程组的解的过程如下: ①设lcm * x + ans为前n个同余方程组的解,lcm * x ...

  10. NOIP2012拓展欧几里得

    拉板题,,,不说话 我之前是不是说过数据结构很烦,,,我想收回,,,今天开始的数论还要恶心,一早上听得头都晕了 先来一发欧几里得拓展裸 #include <cstdio> void gcd ...

随机推荐

  1. Solidworks的Toolbox拖出来的零件另存也没用,重新打开之后被自动替换怎么办

    工具-选项-系统选项-异型孔向导,取消勾选"将此文件夹设为Toolbox零部件的默认搜索位置"   这样把Toolbox的零部件另存之后,就可以修改,比如添加草图和特征,然后另存之 ...

  2. IOS 开发学习33 使用sqlite3

    sqlite3 命令行简单使用 sqlite3 路径 //打开数据库路径连接 select * from sqlite_master where type="table"; //显 ...

  3. SQLServer:探讨EXEC与sp_executesql的区别详解

    摘要 MSSQL为我们提供了两种动态执行SQL语句的命令,分别是EXEC和sp_executesql;通常,sp_executesql则更具有优势,它提供了输入输出接口,而EXEC没有.还有一个最大的 ...

  4. sip

    INVITE sip:10010101402@10.7.36.70:5060 SIP/2.0 Via: SIP/2.0/UDP 10.7.36.250:5060;rport;branch=z9hG4b ...

  5. java中==与equal()的区别

    ==和equal()都是用来判断两个变量是否相等的. (1)如果两个变量是基本类型变量,且都是数值型的(不一定数据类型相同),只要是值相同,将返回true; (2)如果两个变量是引用型变量,只有它们指 ...

  6. 算法笔记_087:蓝桥杯练习 9-1九宫格(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 问题描述 九宫格.输入1-9这9个数字的一种任意排序,构成3*3二维数组.如果每行.每列以及对角线之和都相等,打印1.否则打印0. 样例输出 与上面 ...

  7. 0基础的小白怎么学习Java?

    自身零基础,那么我们应该先学好Java,首先我们来了解下Java的特性: Java语言是简单的 Java语言的语法与C语言和C++语言很接近,使得大多数程序员很容易学习和使用Java.另一方面,Jav ...

  8. ASP.NET CORE 2.1无法添加控制器、视图

    常规操作:右键Controllers,添加控制器 结果提示:运行所选代码生成器时出错 在控制器里快速添加视图也得到同样的错误提示 既然提示代码生成器了,对比了一下2.0和2.1的代码,发现2.1默认没 ...

  9. rsync工具介绍

    rsync工具介绍 http://man.linuxde.net/rsync rsync命令是一个远程数据同步工具,可通过LAN/WAN快速同步多台主机间的文件.rsync使用所谓的“rsync算法” ...

  10. FreeSWITCH小结:呼叫的发起与跟踪

    需求描述 虽然现有的FreeSWITCH功能已经很强大,但是很多情况下,为了配合业务上的功能,还需要做一些定制开发. 有一个基本需求是:如何控制fs外呼,并跟踪外呼后的一系列状态. 解决方案 下面我就 ...