O(n)回文子串(Manacher)算法

资料来源网络 参见:http://www.felix021.com/blog/read.php?2040

问题描述:

输入一个字符串,求出其中最大的回文子串。子串的含义是:在原串中连续出现的字符串片段。回文的含义是:正着看和倒着看相同,如abba和yyxyy。

解析:

这里介绍O(n)回文子串(Manacher)算法

算法基本要点:首 先用一个非常巧妙的方式,将所有可能的奇数/偶数长度的回文子串都转换成了奇数长度:在每个字符的两边都插入一个特殊的符号。比如 abba 变成 #a#b#b#a#, aba变成 #a#b#a#。 为了进一步减少编码的复杂度,可以在字符串的开始加入另一个特殊字符,这样就不用特殊处理越界问题,比如$#a#b#a#。

下面以字符串12212321为例,经过上一步,变成了 S[] = "$#1#2#2#1#2#3#2#1#";

然后用一个数组 P[i] 来记录以字符S[i]为中心的最长回文子串向左/右扩张的长度(包括S[i]),比如S和P的对应关系:

S     #  1  #  2  #  2  #  1  #  2  #  3  #  2  #  1  #
P     1   2  1  2  5   2  1  4   1  2  1  6   1  2   1  2  1
(p.s. 可以看出,P[i]-1正好是原字符串中回文串的总长度)

下面计算P[i],该算法增加两个辅助变量id和mx,其中id表示最大回文子串中心的位置,mx则为id+P[id],也就是最大回文子串的边界。

这个算法的关键点就在这里了:如果mx > i,那么P[i] >= MIN(P[2 * id - i], mx - i)。

具体代码如下:

  1. if(mx > i)
  2. {
  3. p[i] = (p[2*id - i] < (mx - i) ? p[2*id - i] : (mx - i));
  4. }
  5. else
  6. {
  7. p[i] = 1;
  8. }

当 mx - i > P[j] 的时候,以S[j]为中心的回文子串包含在以S[id]为中心的回文子串中,由于 i 和 j 对称,以S[i]为中心的回文子串必然包含在以S[id]为中心的回文子串中,所以必有 P[i] = P[j],见下图。

当 P[j] > mx - i 的时候,以S[j]为中心的回文子串不完全包含于以S[id]为中心的回文子串中,但是基于对称性可知,下图中两个绿框所包围的部分是相同的,也就是说以 S[i]为中心的回文子串,其向右至少会扩张到mx的位置,也就是说 P[i] >= mx - i。至于mx之后的部分是否对称,就只能一个一个匹配了。

对于 mx <= i 的情况,无法对 P[i]做更多的假设,只能P[i] = 1,然后再去匹配了

下面给出原文,进一步解释算法为线性的原因

  1. #include <iostream>
  2. #include <cmath>
  3. #include <algorithm>
  4. #include <string.h>
  5. #include <stdio.h>
  6. #define maxn 110055
  7. using namespace std;
  8. char ma[maxn*];
  9. int mp[maxn*];
  10. int l;
  11. int Manacher(char s[],int len)
  12. {
  13. int res = ;
  14. l = ;
  15. ma[l++] = '$';
  16. ma[l++] = '#';
  17. for(int i=; i<len; i++)
  18. {
  19. ma[l++] = s[i];
  20. ma[l++] = '#';
  21. }
  22. ma[l] = ;
  23. int mx = ,id = ;
  24. for(int i=; i<l; i++)
  25. {
  26. mp[i] = mx >i ?min(mp[*id-i],mx-i):;
  27. while(ma[i+mp[i]] == ma[i-mp[i]]) mp[i] ++;
  28. if(i + mp[i] > mx)
  29. {
  30. mx = i + mp[i];
  31. id = i;
  32. }
  33. }
  34. }
  35. char s[maxn];
  36. int main()
  37. {
  38. //#ifndef ONLINE_JUDGE
  39. // freopen("in.txt","r",stdin);
  40. //#endif // ONLINE_JUDGE
  41. while(~scanf("%s",s))
  42. {
  43. int len = strlen(s);
  44. Manacher(s,len);
  45. int ans = ;
  46. for(int i=; i<l; i++)
  47. {
  48. ans = max(ans,mp[i] );
  49. }
  50. printf("%d\n",ans-);
  51. }
  52. return ;
  53. }

O(n)回文子串(Manacher)算法的更多相关文章

  1. 九度OJ 1528 最长回文子串 -- Manacher算法

    题目地址:http://ac.jobdu.com/problem.php?pid=1528 题目描述: 回文串就是一个正读和反读都一样的字符串,比如"level"或者"n ...

  2. lintcode最长回文子串(Manacher算法)

    题目来自lintcode, 链接:http://www.lintcode.com/zh-cn/problem/longest-palindromic-substring/ 最长回文子串 给出一个字符串 ...

  3. 最长回文子串Manacher算法模板

    Manacher算法能够在O(N)的时间复杂度内得到一个字符串以任意位置为中心的回文子串.其算法的基本原理就是利用已知回文串的左半部分来推导右半部分. 首先,在字符串s中,用rad[i]表示第i个字符 ...

  4. 最长回文子串—Manacher 算法 及 python实现

    最长回文子串问题:给定一个字符串,求它的最长回文子串长度.如果一个字符串正着读和反着读是一样的,那它就是回文串.   给定一个字符串,求它最长的回文子串长度,例如输入字符串'35534321',它的最 ...

  5. hihocoder #1032 : 最长回文子串 Manacher算法

    题目链接: https://hihocoder.com/problemset/problem/1032?sid=868170 最长回文子串 时间限制:1000ms内存限制:64MB 问题描述 小Hi和 ...

  6. 5. Longest Palindromic Substring(最长回文子串 manacher 算法/ DP动态规划)

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

  7. HiHo 1032 最长回文子串 (Manacher算法求解)

    /** * 求解最长回文字串,Manacher算法o(n)求解最长回文子串问题 **/ #include<cstdio> #include<cstdlib> #include& ...

  8. hihoCoder #1032 : 最长回文子串 [ Manacher算法--O(n)回文子串算法 ]

    传送门 #1032 : 最长回文子串 时间限制:1000ms 单点时限:1000ms 内存限制:64MB 描述 小Hi和小Ho是一对好朋友,出生在信息化社会的他们对编程产生了莫大的兴趣,他们约定好互相 ...

  9. 51nod1089 最长回文子串 manacher算法

    0. 问题定义 最长回文子串问题:给定一个字符串,求它的最长回文子串长度. 如果一个字符串正着读和反着读是一样的,那它就是回文串.下面是一些回文串的实例: 12321 a aba abba aaaa ...

  10. 求最长回文子串——Manacher算法

    回文串包括奇数长的和偶数长的,一般求的时候都要分情况讨论,这个算法做了个简单的处理把奇偶情况统一了.算法的基本思路是这样的,把原串每个字符中间用一个串中没出现过的字符分隔开来(统一奇偶),用一个数组p ...

随机推荐

  1. 数据库sharding,横向扩展

    学习资料如下: http://www.cnblogs.com/skyme/p/3459765.html http://my.oschina.net/anthonyyau/blog/307165 htt ...

  2. HDU5957 Query on a graph(拓扑找环,BFS序,线段树更新,分类讨论)

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=5957 题意:D(u,v)是节点u和节点v之间的距离,S(u,v)是一系列满足D(u,x)<=k的点 ...

  3. git与svn与github与码云的区别

    1.git与github(https://www.oschina.net/)的区别 Git(https://git-scm.com/)是一个版本控制工具 github是一个用git做版本控制的项目托管 ...

  4. arm开发板刷机方法

    1.linux系统启动方式 bootloader->kernel->system 在嵌入式系统中内存为DRAM,inand flash 都不能直接启动需要被初始化.其中初始化程序在(boo ...

  5. Stick footers布局总结

    一.Sticky footers解释 在网页设计中,Sticky footers设计是最古老和最常见的效果之一,大多数人都曾经经历过.它可以概括如下:如果页面内容不够长的时候,页脚块粘贴在视窗底部:如 ...

  6. ConvexScore

    题目描述 You are given N points (xi,yi) located on a two-dimensional plane. Consider a subset S of the N ...

  7. vijos 1180 选课 树形DP

    描述 学校实行学分制.每门的必修课都有固定的学分,同时还必须获得相应的选修课程学分.学校开设了N(N<300)门的选修课程,每个学生可选课程的数量M是给定的.学生选修了这M门课并考核通过就能获得 ...

  8. Doc常用命令

    1. 获取目录: dir 2. 清屏: cls

  9. PHP日期时间操作

    一.设置时区 date_default_timezone_set('PRC'); 二.获取当前时间的 Unix 时间戳(格林威治时间 1970 年 1 月 1 日 00:00:00到当前时间的秒数)和 ...

  10. Flask 应用上下文和请求上线文原理图