O(n)回文子串(Manacher)算法
O(n)回文子串(Manacher)算法
资料来源网络 参见:http://www.felix021.com/blog/read.php?2040
问题描述:
输入一个字符串,求出其中最大的回文子串。子串的含义是:在原串中连续出现的字符串片段。回文的含义是:正着看和倒着看相同,如abba和yyxyy。
解析:
这里介绍O(n)回文子串(Manacher)算法
算法基本要点:首 先用一个非常巧妙的方式,将所有可能的奇数/偶数长度的回文子串都转换成了奇数长度:在每个字符的两边都插入一个特殊的符号。比如 abba 变成 #a#b#b#a#, aba变成 #a#b#a#。 为了进一步减少编码的复杂度,可以在字符串的开始加入另一个特殊字符,这样就不用特殊处理越界问题,比如$#a#b#a#。
下面以字符串12212321为例,经过上一步,变成了 S[] = "$#1#2#2#1#2#3#2#1#";
然后用一个数组 P[i] 来记录以字符S[i]为中心的最长回文子串向左/右扩张的长度(包括S[i]),比如S和P的对应关系:
S # 1 # 2 # 2 # 1 # 2 # 3 # 2 # 1 #
P 1 2 1 2 5 2 1 4 1 2 1 6 1 2 1 2 1
(p.s. 可以看出,P[i]-1正好是原字符串中回文串的总长度)
下面计算P[i],该算法增加两个辅助变量id和mx,其中id表示最大回文子串中心的位置,mx则为id+P[id],也就是最大回文子串的边界。
这个算法的关键点就在这里了:如果mx > i,那么P[i] >= MIN(P[2 * id - i], mx - i)。
具体代码如下:
if(mx > i)
{
p[i] = (p[2*id - i] < (mx - i) ? p[2*id - i] : (mx - i));
}
else
{
p[i] = 1;
}
当 mx - i > P[j] 的时候,以S[j]为中心的回文子串包含在以S[id]为中心的回文子串中,由于 i 和 j 对称,以S[i]为中心的回文子串必然包含在以S[id]为中心的回文子串中,所以必有 P[i] = P[j],见下图。
当 P[j] > mx - i 的时候,以S[j]为中心的回文子串不完全包含于以S[id]为中心的回文子串中,但是基于对称性可知,下图中两个绿框所包围的部分是相同的,也就是说以 S[i]为中心的回文子串,其向右至少会扩张到mx的位置,也就是说 P[i] >= mx - i。至于mx之后的部分是否对称,就只能一个一个匹配了。
对于 mx <= i 的情况,无法对 P[i]做更多的假设,只能P[i] = 1,然后再去匹配了
下面给出原文,进一步解释算法为线性的原因
#include <iostream>
#include <cmath>
#include <algorithm>
#include <string.h>
#include <stdio.h>
#define maxn 110055
using namespace std;
char ma[maxn*];
int mp[maxn*];
int l;
int Manacher(char s[],int len)
{
int res = ;
l = ;
ma[l++] = '$';
ma[l++] = '#';
for(int i=; i<len; i++)
{
ma[l++] = s[i];
ma[l++] = '#';
}
ma[l] = ;
int mx = ,id = ;
for(int i=; i<l; i++)
{
mp[i] = mx >i ?min(mp[*id-i],mx-i):;
while(ma[i+mp[i]] == ma[i-mp[i]]) mp[i] ++;
if(i + mp[i] > mx)
{
mx = i + mp[i];
id = i;
}
}
}
char s[maxn];
int main()
{
//#ifndef ONLINE_JUDGE
// freopen("in.txt","r",stdin);
//#endif // ONLINE_JUDGE
while(~scanf("%s",s))
{
int len = strlen(s);
Manacher(s,len);
int ans = ;
for(int i=; i<l; i++)
{
ans = max(ans,mp[i] );
}
printf("%d\n",ans-);
}
return ;
}
O(n)回文子串(Manacher)算法的更多相关文章
- 九度OJ 1528 最长回文子串 -- Manacher算法
题目地址:http://ac.jobdu.com/problem.php?pid=1528 题目描述: 回文串就是一个正读和反读都一样的字符串,比如"level"或者"n ...
- lintcode最长回文子串(Manacher算法)
题目来自lintcode, 链接:http://www.lintcode.com/zh-cn/problem/longest-palindromic-substring/ 最长回文子串 给出一个字符串 ...
- 最长回文子串Manacher算法模板
Manacher算法能够在O(N)的时间复杂度内得到一个字符串以任意位置为中心的回文子串.其算法的基本原理就是利用已知回文串的左半部分来推导右半部分. 首先,在字符串s中,用rad[i]表示第i个字符 ...
- 最长回文子串—Manacher 算法 及 python实现
最长回文子串问题:给定一个字符串,求它的最长回文子串长度.如果一个字符串正着读和反着读是一样的,那它就是回文串. 给定一个字符串,求它最长的回文子串长度,例如输入字符串'35534321',它的最 ...
- hihocoder #1032 : 最长回文子串 Manacher算法
题目链接: https://hihocoder.com/problemset/problem/1032?sid=868170 最长回文子串 时间限制:1000ms内存限制:64MB 问题描述 小Hi和 ...
- 5. Longest Palindromic Substring(最长回文子串 manacher 算法/ DP动态规划)
Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...
- HiHo 1032 最长回文子串 (Manacher算法求解)
/** * 求解最长回文字串,Manacher算法o(n)求解最长回文子串问题 **/ #include<cstdio> #include<cstdlib> #include& ...
- hihoCoder #1032 : 最长回文子串 [ Manacher算法--O(n)回文子串算法 ]
传送门 #1032 : 最长回文子串 时间限制:1000ms 单点时限:1000ms 内存限制:64MB 描述 小Hi和小Ho是一对好朋友,出生在信息化社会的他们对编程产生了莫大的兴趣,他们约定好互相 ...
- 51nod1089 最长回文子串 manacher算法
0. 问题定义 最长回文子串问题:给定一个字符串,求它的最长回文子串长度. 如果一个字符串正着读和反着读是一样的,那它就是回文串.下面是一些回文串的实例: 12321 a aba abba aaaa ...
- 求最长回文子串——Manacher算法
回文串包括奇数长的和偶数长的,一般求的时候都要分情况讨论,这个算法做了个简单的处理把奇偶情况统一了.算法的基本思路是这样的,把原串每个字符中间用一个串中没出现过的字符分隔开来(统一奇偶),用一个数组p ...
随机推荐
- [Leetcode] Construct binary tree from inorder and postorder travesal 利用中序和后续遍历构造二叉树
Given inorder and postorder traversal of a tree, construct the binary tree. Note: You may assume th ...
- UVA.725 Division (暴力)
UVA.725 Division (暴力) 题意分析 找出abcdefghij分别是0-9(不得有重复),使得式子abcde/fghij = n. 如果分别枚举每个数字,就会有10^10,肯定爆炸,由 ...
- 监听scrollview
http://blog.csdn.net/u012527802/article/details/47320009
- D-query SPOJ - DQUERY(莫队)统计不同数的数量
Given a sequence of n numbers a1, a2, ..., an and a number of d-queries. A d-query is a pair (i, j) ...
- [zz]【整理】Python中Cookie的处理:自动处理Cookie,保存为Cookie文件,从文件载入Cookie
http://www.crifan.com/python_auto_handle_cookie_and_save_to_from_cookie_file/ #!/usr/bin/python # -* ...
- javascript实现正整数分数约分
//m,n为正整数的分子和分母 function reductionTo(m, n) { var arr = []; if (!isInteger(m) || !isInteger(n)) { con ...
- Nginx+Tomcat关于Session的管理
前言 Nginx+Tomcat对Session的管理一直有了解,但是一直没有实际操作一遍,本文从最简单的安装启动开始,通过实例的方式循序渐进的介绍了几种管理session的方式. nginx安装配置 ...
- 选择排序Selection sort
顾名思意,就是直接从待排序数组里选择一个最小(或最大)的数字,每次都拿一个最小数字出来, 顺序放入新数组,直到全部拿完 再简单点,对着一群数组说,你们谁最小出列,站到最后边 然后继续对剩余的无序数组说 ...
- 解决nginx在记录post数据时 中文字符转成16进制的问题【转载】
1. 问题描述 nginx 在获取post数据时候,如果是中文,则转换成16进制显示在日志文件中,如下图所示. Paste_Image.png 日志格式为: log_format postdata ...
- 用Photoshop制作一寸照片
好了简单介绍一下自己如何制作一寸照片. 工具/原料 Photoshop CS4 更高版本也可以 方法/步骤 1 打开你要修改的照片 2 选择裁剪工具设置参数 选择最佳位置裁剪 选择 ...