O(n)回文子串(Manacher)算法
O(n)回文子串(Manacher)算法
资料来源网络 参见:http://www.felix021.com/blog/read.php?2040
问题描述:
输入一个字符串,求出其中最大的回文子串。子串的含义是:在原串中连续出现的字符串片段。回文的含义是:正着看和倒着看相同,如abba和yyxyy。
解析:
这里介绍O(n)回文子串(Manacher)算法
算法基本要点:首 先用一个非常巧妙的方式,将所有可能的奇数/偶数长度的回文子串都转换成了奇数长度:在每个字符的两边都插入一个特殊的符号。比如 abba 变成 #a#b#b#a#, aba变成 #a#b#a#。 为了进一步减少编码的复杂度,可以在字符串的开始加入另一个特殊字符,这样就不用特殊处理越界问题,比如$#a#b#a#。
下面以字符串12212321为例,经过上一步,变成了 S[] = "$#1#2#2#1#2#3#2#1#";
然后用一个数组 P[i] 来记录以字符S[i]为中心的最长回文子串向左/右扩张的长度(包括S[i]),比如S和P的对应关系:
S # 1 # 2 # 2 # 1 # 2 # 3 # 2 # 1 #
P 1 2 1 2 5 2 1 4 1 2 1 6 1 2 1 2 1
(p.s. 可以看出,P[i]-1正好是原字符串中回文串的总长度)
下面计算P[i],该算法增加两个辅助变量id和mx,其中id表示最大回文子串中心的位置,mx则为id+P[id],也就是最大回文子串的边界。
这个算法的关键点就在这里了:如果mx > i,那么P[i] >= MIN(P[2 * id - i], mx - i)。
具体代码如下:

- if(mx > i)
- {
- p[i] = (p[2*id - i] < (mx - i) ? p[2*id - i] : (mx - i));
- }
- else
- {
- p[i] = 1;
- }

当 mx - i > P[j] 的时候,以S[j]为中心的回文子串包含在以S[id]为中心的回文子串中,由于 i 和 j 对称,以S[i]为中心的回文子串必然包含在以S[id]为中心的回文子串中,所以必有 P[i] = P[j],见下图。

当 P[j] > mx - i 的时候,以S[j]为中心的回文子串不完全包含于以S[id]为中心的回文子串中,但是基于对称性可知,下图中两个绿框所包围的部分是相同的,也就是说以 S[i]为中心的回文子串,其向右至少会扩张到mx的位置,也就是说 P[i] >= mx - i。至于mx之后的部分是否对称,就只能一个一个匹配了。

对于 mx <= i 的情况,无法对 P[i]做更多的假设,只能P[i] = 1,然后再去匹配了
下面给出原文,进一步解释算法为线性的原因

- #include <iostream>
- #include <cmath>
- #include <algorithm>
- #include <string.h>
- #include <stdio.h>
- #define maxn 110055
- using namespace std;
- char ma[maxn*];
- int mp[maxn*];
- int l;
- int Manacher(char s[],int len)
- {
- int res = ;
- l = ;
- ma[l++] = '$';
- ma[l++] = '#';
- for(int i=; i<len; i++)
- {
- ma[l++] = s[i];
- ma[l++] = '#';
- }
- ma[l] = ;
- int mx = ,id = ;
- for(int i=; i<l; i++)
- {
- mp[i] = mx >i ?min(mp[*id-i],mx-i):;
- while(ma[i+mp[i]] == ma[i-mp[i]]) mp[i] ++;
- if(i + mp[i] > mx)
- {
- mx = i + mp[i];
- id = i;
- }
- }
- }
- char s[maxn];
- int main()
- {
- //#ifndef ONLINE_JUDGE
- // freopen("in.txt","r",stdin);
- //#endif // ONLINE_JUDGE
- while(~scanf("%s",s))
- {
- int len = strlen(s);
- Manacher(s,len);
- int ans = ;
- for(int i=; i<l; i++)
- {
- ans = max(ans,mp[i] );
- }
- printf("%d\n",ans-);
- }
- return ;
- }
O(n)回文子串(Manacher)算法的更多相关文章
- 九度OJ 1528 最长回文子串 -- Manacher算法
题目地址:http://ac.jobdu.com/problem.php?pid=1528 题目描述: 回文串就是一个正读和反读都一样的字符串,比如"level"或者"n ...
- lintcode最长回文子串(Manacher算法)
题目来自lintcode, 链接:http://www.lintcode.com/zh-cn/problem/longest-palindromic-substring/ 最长回文子串 给出一个字符串 ...
- 最长回文子串Manacher算法模板
Manacher算法能够在O(N)的时间复杂度内得到一个字符串以任意位置为中心的回文子串.其算法的基本原理就是利用已知回文串的左半部分来推导右半部分. 首先,在字符串s中,用rad[i]表示第i个字符 ...
- 最长回文子串—Manacher 算法 及 python实现
最长回文子串问题:给定一个字符串,求它的最长回文子串长度.如果一个字符串正着读和反着读是一样的,那它就是回文串. 给定一个字符串,求它最长的回文子串长度,例如输入字符串'35534321',它的最 ...
- hihocoder #1032 : 最长回文子串 Manacher算法
题目链接: https://hihocoder.com/problemset/problem/1032?sid=868170 最长回文子串 时间限制:1000ms内存限制:64MB 问题描述 小Hi和 ...
- 5. Longest Palindromic Substring(最长回文子串 manacher 算法/ DP动态规划)
Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...
- HiHo 1032 最长回文子串 (Manacher算法求解)
/** * 求解最长回文字串,Manacher算法o(n)求解最长回文子串问题 **/ #include<cstdio> #include<cstdlib> #include& ...
- hihoCoder #1032 : 最长回文子串 [ Manacher算法--O(n)回文子串算法 ]
传送门 #1032 : 最长回文子串 时间限制:1000ms 单点时限:1000ms 内存限制:64MB 描述 小Hi和小Ho是一对好朋友,出生在信息化社会的他们对编程产生了莫大的兴趣,他们约定好互相 ...
- 51nod1089 最长回文子串 manacher算法
0. 问题定义 最长回文子串问题:给定一个字符串,求它的最长回文子串长度. 如果一个字符串正着读和反着读是一样的,那它就是回文串.下面是一些回文串的实例: 12321 a aba abba aaaa ...
- 求最长回文子串——Manacher算法
回文串包括奇数长的和偶数长的,一般求的时候都要分情况讨论,这个算法做了个简单的处理把奇偶情况统一了.算法的基本思路是这样的,把原串每个字符中间用一个串中没出现过的字符分隔开来(统一奇偶),用一个数组p ...
随机推荐
- 数据库sharding,横向扩展
学习资料如下: http://www.cnblogs.com/skyme/p/3459765.html http://my.oschina.net/anthonyyau/blog/307165 htt ...
- HDU5957 Query on a graph(拓扑找环,BFS序,线段树更新,分类讨论)
传送门:http://acm.hdu.edu.cn/showproblem.php?pid=5957 题意:D(u,v)是节点u和节点v之间的距离,S(u,v)是一系列满足D(u,x)<=k的点 ...
- git与svn与github与码云的区别
1.git与github(https://www.oschina.net/)的区别 Git(https://git-scm.com/)是一个版本控制工具 github是一个用git做版本控制的项目托管 ...
- arm开发板刷机方法
1.linux系统启动方式 bootloader->kernel->system 在嵌入式系统中内存为DRAM,inand flash 都不能直接启动需要被初始化.其中初始化程序在(boo ...
- Stick footers布局总结
一.Sticky footers解释 在网页设计中,Sticky footers设计是最古老和最常见的效果之一,大多数人都曾经经历过.它可以概括如下:如果页面内容不够长的时候,页脚块粘贴在视窗底部:如 ...
- ConvexScore
题目描述 You are given N points (xi,yi) located on a two-dimensional plane. Consider a subset S of the N ...
- vijos 1180 选课 树形DP
描述 学校实行学分制.每门的必修课都有固定的学分,同时还必须获得相应的选修课程学分.学校开设了N(N<300)门的选修课程,每个学生可选课程的数量M是给定的.学生选修了这M门课并考核通过就能获得 ...
- Doc常用命令
1. 获取目录: dir 2. 清屏: cls
- PHP日期时间操作
一.设置时区 date_default_timezone_set('PRC'); 二.获取当前时间的 Unix 时间戳(格林威治时间 1970 年 1 月 1 日 00:00:00到当前时间的秒数)和 ...
- Flask 应用上下文和请求上线文原理图