hdu 1133(卡特兰数变形)
反过来,任何一个由n+1个0和n-1个1组成的2n位二进制数,由于0的个数多2个,2n为偶数,故必在某一个奇数位上出现0的累计数超过1的累计数。同样在后面部分0和1互换,使之成为由n个0和n个1组成的2n位数,即n+1个0和n-1个1组成的2n位数必对应一个不符合要求的数。
因而不合要求的2n位数与n+1个0,n-1个1组成的排列一一对应。 显然,不符合要求的方案数为c(2n,n+1)。
import java.math.BigInteger;
import java.util.Scanner; public class Main {
public static void main(String[] args) {
Scanner sc =new Scanner (System.in);
int t =;
while(sc.hasNext()){
int m =sc.nextInt();
int n =sc.nextInt();
if(n==&&m==) break;
System.out.println("Test #"+(t++)+":");
if(n>m) {
System.out.println();
continue;
}
BigInteger ans = solve(n+m,n).subtract(solve(n+m,m+));
ans = ans.multiply(pow(n)).multiply(pow(m));
System.out.println(ans);
}
} private static BigInteger pow(int n) {
BigInteger sum = BigInteger.valueOf();
if(n==) return sum;
for(int i=;i<=n;i++){
sum = sum.multiply(BigInteger.valueOf(i));
}
return sum;
} private static BigInteger solve(int a, int b) {
BigInteger sum = BigInteger.valueOf();
if(a<b) return BigInteger.ZERO;
if(b==||a==b) return sum;
for(int i=a;i>b;i--){
sum = sum.multiply(BigInteger.valueOf(i));
}
for(int i=a-b;i>;i--){
sum = sum.divide(BigInteger.valueOf(i));
}
return sum;
} }
hdu 1133(卡特兰数变形)的更多相关文章
- Buy the Ticket HDU 1133 卡特兰数应用+Java大数
Problem Description The "Harry Potter and the Goblet of Fire" will be on show in the next ...
- HDU 4828 (卡特兰数+逆)
HDU 4828 Grids 思路:能够转化为卡特兰数,先把前n个人标为0.后n个人标为1.然后去全排列,全排列的数列.假设每一个1的前面相应的0大于等于1,那么就是满足的序列,假设把0看成入栈,1看 ...
- hdu 1130,hdu 1131(卡特兰数,大数)
How Many Trees? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)T ...
- HDU 4828 (卡特兰数+逆元)
HDU 4828 Grids 思路:能够转化为卡特兰数,先把前n个人标为0,后n个人标为1.然后去全排列,全排列的数列,假设每一个1的前面相应的0大于等于1,那么就是满足的序列.假设把0看成入栈,1看 ...
- hdu 1023 卡特兰数+高精度
Train Problem II Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- 2014年百度之星程序设计大赛 - 初赛(第一轮) hdu Grids (卡特兰数 大数除法取余 扩展gcd)
题目链接 分析:打表以后就能发现时卡特兰数, 但是有除法取余. f[i] = f[i-1]*(4*i - 2)/(i+1); 看了一下网上的题解,照着题解写了下面的代码,不过还是不明白,为什么用扩展g ...
- HDU 1023(卡特兰数 数学)
题意是求一列连续升序的数经过一个栈之后能变成的不同顺序的数目. 开始时依然摸不着头脑,借鉴了别人的博客之后,才知道这是卡特兰数,卡特兰数的计算公式是:a( n ) = ( ( 4*n-2 ) / ...
- Train Problem II HDU 1023 卡特兰数
Problem Description As we all know the Train Problem I, the boss of the Ignatius Train Station want ...
- hdu 1133 卡特兰 高精度
Buy the Ticket Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...
随机推荐
- [BJOI2018]求和
link 其实可以用$sum(i,j)$表示从$i$到$1$的$k$次方的值,然后就是$lca$的基本操作 注意,能一起干的事情就一起搞,要不会超时 #include<iostream> ...
- hzwer分块九题(暂时持续更新)
hzwer分块9题 分块1:区间加法,单点查询 Code #include<bits/stdc++.h> #define in(i) (i=read()) using namespace ...
- [codeforces/edu4]总结(F)
链接:http://codeforces.com/contest/612/ A题: 枚举切多少个p,看剩下的能否整除q. B题: 从1到n模拟一下,累加移动的距离. C题: 先用括号匹配的思路看是否有 ...
- 学习tcpIp必备的抓包工具wireshark
wireshark是一个优秀的抓包工具 ip.src=192.168.10.123 发送http的一端 ip.dst=192.168.10.126 接收http的一端 如下图所示:
- Mybatis批量更新详解
转:http://www.cnblogs.com/winkey4986/p/3915151.html Mybatis批量更新 批量操作就不进行赘述了.减少服务器与数据库之间的交互.网上有很多关于批量插 ...
- 搭建JavaWeb应用开发环境
下载和安装Tomcat服务器 下载Tomcat安装程序包:http://tomcat.apache.org/,下载一个zip版本,解压到本地即完成了Tomcat的安装. 测试是否安装成功:进入Tomc ...
- ACM3790迪杰斯特拉算法运用
最短路径问题 Problem Description 给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的 ...
- Linux(CentOS6.7) 安装MySql5.7数据库 图文教程
linux(CentOS6.7) 环境Mysql 5.7.17安装教程分享给大家,供大家参考,具体内容如下: 1系统约定安装文件下载目录:/data/softwareMysql目录安装位置:/usr/ ...
- 【bzoj3362-导航难题】带权并查集
题意: 约翰所在的乡村可以看做一个二维平面,其中有N 座牧场,每座牧场都有自己的坐标,编号为1到N.牧场间存在一些道路,每条道路道路连接两个不同的牧场,方向必定平行于X 轴或Y轴.连通两座牧场之间的路 ...
- 【POJ】1222 EXTENDED LIGHTS OUT
[算法]高斯消元 [题解] 高斯消元经典题型:异或方程组 poj 1222 高斯消元详解 异或相当于相加后mod2 异或方程组就是把加减消元全部改为异或. 异或性质:00 11为假,01 10为真.与 ...