hdu 1133(卡特兰数变形)
反过来,任何一个由n+1个0和n-1个1组成的2n位二进制数,由于0的个数多2个,2n为偶数,故必在某一个奇数位上出现0的累计数超过1的累计数。同样在后面部分0和1互换,使之成为由n个0和n个1组成的2n位数,即n+1个0和n-1个1组成的2n位数必对应一个不符合要求的数。
因而不合要求的2n位数与n+1个0,n-1个1组成的排列一一对应。 显然,不符合要求的方案数为c(2n,n+1)。
import java.math.BigInteger;
import java.util.Scanner; public class Main {
public static void main(String[] args) {
Scanner sc =new Scanner (System.in);
int t =;
while(sc.hasNext()){
int m =sc.nextInt();
int n =sc.nextInt();
if(n==&&m==) break;
System.out.println("Test #"+(t++)+":");
if(n>m) {
System.out.println();
continue;
}
BigInteger ans = solve(n+m,n).subtract(solve(n+m,m+));
ans = ans.multiply(pow(n)).multiply(pow(m));
System.out.println(ans);
}
} private static BigInteger pow(int n) {
BigInteger sum = BigInteger.valueOf();
if(n==) return sum;
for(int i=;i<=n;i++){
sum = sum.multiply(BigInteger.valueOf(i));
}
return sum;
} private static BigInteger solve(int a, int b) {
BigInteger sum = BigInteger.valueOf();
if(a<b) return BigInteger.ZERO;
if(b==||a==b) return sum;
for(int i=a;i>b;i--){
sum = sum.multiply(BigInteger.valueOf(i));
}
for(int i=a-b;i>;i--){
sum = sum.divide(BigInteger.valueOf(i));
}
return sum;
} }
hdu 1133(卡特兰数变形)的更多相关文章
- Buy the Ticket HDU 1133 卡特兰数应用+Java大数
Problem Description The "Harry Potter and the Goblet of Fire" will be on show in the next ...
- HDU 4828 (卡特兰数+逆)
HDU 4828 Grids 思路:能够转化为卡特兰数,先把前n个人标为0.后n个人标为1.然后去全排列,全排列的数列.假设每一个1的前面相应的0大于等于1,那么就是满足的序列,假设把0看成入栈,1看 ...
- hdu 1130,hdu 1131(卡特兰数,大数)
How Many Trees? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)T ...
- HDU 4828 (卡特兰数+逆元)
HDU 4828 Grids 思路:能够转化为卡特兰数,先把前n个人标为0,后n个人标为1.然后去全排列,全排列的数列,假设每一个1的前面相应的0大于等于1,那么就是满足的序列.假设把0看成入栈,1看 ...
- hdu 1023 卡特兰数+高精度
Train Problem II Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- 2014年百度之星程序设计大赛 - 初赛(第一轮) hdu Grids (卡特兰数 大数除法取余 扩展gcd)
题目链接 分析:打表以后就能发现时卡特兰数, 但是有除法取余. f[i] = f[i-1]*(4*i - 2)/(i+1); 看了一下网上的题解,照着题解写了下面的代码,不过还是不明白,为什么用扩展g ...
- HDU 1023(卡特兰数 数学)
题意是求一列连续升序的数经过一个栈之后能变成的不同顺序的数目. 开始时依然摸不着头脑,借鉴了别人的博客之后,才知道这是卡特兰数,卡特兰数的计算公式是:a( n ) = ( ( 4*n-2 ) / ...
- Train Problem II HDU 1023 卡特兰数
Problem Description As we all know the Train Problem I, the boss of the Ignatius Train Station want ...
- hdu 1133 卡特兰 高精度
Buy the Ticket Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...
随机推荐
- NOIP2016Day1T2天天爱跑步(LCA+桶)
据说是今年NOIP最难一题了...我还记得当时满怀期待心情点开Day1的题发现T2就不会了于是怀疑人生良久... 啊好像很多大爷都是用线段树合并写的,我怎么什么数据结构都不会啊呜呜呜... 题目大意就 ...
- SQL_MODE
一 声明 标红部分为重点了解 原文:https://segmentfault.com/a/1190000005936172 二 SQL_MODE参数值 官方手册专门有一节介绍 https://dev. ...
- mapper中的CDATA标签的用法
术语 CDATA 指的是不应由 XML 解析器进行解析的文本数据(Unparsed Character Data). 在 XML 元素中,"<" 和 "&& ...
- bzoj 1468 Tree 点分
Tree Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1972 Solved: 1101[Submit][Status][Discuss] Desc ...
- Redrain 通用菜单控件使用方法和说明(附源码和demo)
转载请说明原出处,谢谢~~:http://blog.csdn.net/zhuhongshu/article/details/42889709 大概半年前我写过博客说明怎么改造duilib的原代Menu ...
- 【设计模式】 模式PK:命令模式VS策略模式
1.概述 命令模式和策略模式的类图确实很相似,只是命令模式多了一个接收者(Receiver)角色.它们虽然同为行为类模式,但是两者的区别还是很明显的.策略模式的意图是封装算法,它认为“算法”已经是一个 ...
- 洛谷P3764 签到题 III
题目背景 pj组选手zzq近日学会了求最大公约数的辗转相除法. 题目描述 类比辗转相除法,zzq定义了一个奇怪的函数: typedef long long ll; ll f(ll a,ll b) { ...
- 大聊Python----SocketServer
什么是SocketServer? SocketServer的最主要的作用是实现并发处理,也就是可以多个用户同时上传和下载文件. socketserver模块简化了编写网络服务器的任务. sockets ...
- HDU 4757 可持久化trie树
首先如果给定一些数,询问这些数中哪个数^给定的数的值最大的话,我们可以建立一颗trie树,根连接的两条边分别为0,1,表示二进制下第15位,那么我们可以建立一颗trie树,每一条从根到叶子节点的链表示 ...
- 伪病毒 Rp_test
第一个写的对电脑有破坏性的程序= =,然后发现写system的copy的时候不会用字符串替代路径,然后就萎了= =,只能写一个没有自身复制的伪病毒了,坑到了好多同学的电脑,23333.... //By ...