面试时被问到spark RDD的宽窄依赖,虽然问题很简单,但是答得很不好。还是应该整理一下描述,这样面试才能答得更好。

看到一篇很好的文章,转载过来了。感觉比《spark技术内幕》这本书讲的好多了。

原文链接:https://www.jianshu.com/p/5c2301dfa360

1.窄依赖

窄依赖就是指父RDD的每个分区只被一个子RDD分区使用,子RDD分区通常只对应常数个父RDD分区,如下图所示【其中每个小方块代表一个RDD Partition】

 

窄依赖有分为两种:

  • 一种是一对一的依赖,即OneToOneDependency
  • 还有一个是范围的依赖,即RangeDependency,它仅仅被org.apache.spark.rdd.UnionRDD使用。UnionRDD是把多个RDD合成一个RDD,这些RDD是被拼接而成,即每个parent RDD的Partition的相对顺序不会变,只不过每个parent RDD在UnionRDD中的Partition的起始位置不同

2.宽依赖

宽依赖就是指父RDD的每个分区都有可能被多个子RDD分区使用,子RDD分区通常对应父RDD所有分区,如下图所示【其中每个小方块代表一个RDD Partition】

 

3.窄依赖与窄依赖比较

  • 宽依赖往往对应着shuffle操作,需要在运行的过程中将同一个RDD分区传入到不同的RDD分区中,中间可能涉及到多个节点之间数据的传输,而窄依赖的每个父RDD分区通常只会传入到另一个子RDD分区,通常在一个节点内完成。
  • 当RDD分区丢失时,对于窄依赖来说,由于父RDD的一个分区只对应一个子RDD分区,这样只需要重新计算与子RDD分区对应的父RDD分区就行。这个计算对数据的利用是100%的
  • 当RDD分区丢失时,对于宽依赖来说,重算的父RDD分区只有一部分数据是对应丢失的子RDD分区的,另一部分就造成了多余的计算。宽依赖中的子RDD分区通常来自多个父RDD分区,极端情况下,所有父RDD都有可能重新计算。如下图,par4丢失,则需要重新计算par1,par2,par3,产生了冗余数据par5

4.宽依赖,窄依赖函数

  • 窄依赖的函数有:
    map, filter, union, join(父RDD是hash-partitioned ), mapPartitions, mapValues
  • 宽依赖的函数有:
    groupByKey, join(父RDD不是hash-partitioned ), partitionBy


 

作者:不圆的石头
链接:https://www.jianshu.com/p/5c2301dfa360
來源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

Spark 宽窄依赖的更多相关文章

  1. 11、spark内核架构剖析与宽窄依赖

    一.内核剖析 1.内核模块 1.Application 2.spark-submit 3.Driver 4.SparkContext 5.Master 6.Worker 7.Executor 8.Jo ...

  2. Spark RDD基本概念、宽窄依赖、转换行为操作

    目录 RDD概述 RDD的内部代码 案例 小总结 转换.行动算子 宽.窄依赖 Reference 本文介绍一下rdd的基本属性概念.rdd的转换/行动操作.rdd的宽/窄依赖. RDD:Resilie ...

  3. spark rdd 宽窄依赖理解

    == 转载 == http://blog.csdn.net/houmou/article/details/52531205 Spark中RDD的高效与DAG图有着莫大的关系,在DAG调度中需要对计算过 ...

  4. Spark RDD 宽窄依赖

    RDD 宽窄依赖 RDD之间有一系列的依赖关系, 可分为窄依赖和宽依赖 窄依赖 从 RDD 的 parition 角度来看 父 RRD 的 parition 和 子 RDD 的 parition 之间 ...

  5. 【Spark-core学习之五】 RDD宽窄依赖 & Stage

    环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 scala-2.10.4(依赖jdk1.8) spark ...

  6. Spark 宽窄依赖和stage的划分

    窄依赖 父RDD和子RDD partition之间的关系是一对一的,或者父RDD一个partition只对应一个子RDD的partition情况下的父RDD和子RDD partition关系是多对一的 ...

  7. 关于spark RDD trans action算子、lineage、宽窄依赖详解

    这篇文章想从spark当初设计时为何提出RDD概念,相对于hadoop,RDD真的能给spark带来何等优势.之前本想开篇是想总体介绍spark,以及环境搭建过程,但个人感觉RDD更为重要 铺垫 在h ...

  8. spark优化——依赖包传入HDFS_spark.yarn.jar和spark.yarn.archive的使用

    一.参数说明 启动Spark任务时,在没有配置spark.yarn.archive或者spark.yarn.jars时, 会看到不停地上传jar,非常耗时:使用spark.yarn.archive可以 ...

  9. 通过 spark.files 传入spark任务依赖的文件源码分析

    版本:spak2.3 相关源码:org.apache.spark.SparkContext 在创建spark任务时候,往往会指定一些依赖文件,通常我们可以在spark-submit脚本使用--file ...

随机推荐

  1. 使用synergyc共享键鼠

    通常情况下我们经常同时操作两台或者多台电脑, 这样就会存在多个键盘鼠标来回切换的问题. 那么我们主要的目标就是怎么在多个电脑上共享一套键盘鼠标,而且可以轻松的来回切换呢. 网上有很多的解决方案,这里我 ...

  2. 巨蟒python全栈开发-第21天 继承

    一.今日主要内容 1.了解python2和python3类的区别 python2在2.2之前使用的是经典类,2.2之后,使用的是新式类 class Foo: pass class Foo(object ...

  3. grep、egrep命令用法

    何谓正则表达式 正则表达式,又称正规表示法.常规表示法(Regular Expression,在代码中常简写为regex.regexp或RE),是一类字符所书写的模式,其中许多字符不表示其字面意义,而 ...

  4. Tunneling protocol

    w https://en.wikipedia.org/wiki/Tunneling_protocol

  5. python pip源配置,pip配置文件存放位置

    https://blog.csdn.net/u013066730/article/details/54580789/ pip源配置文件可以放置的位置: Linux/Unix: /etc/pip.con ...

  6. 第19章—后端分页(PageHelper)

    spring boot 系列学习记录:http://www.cnblogs.com/jinxiaohang/p/8111057.html 码云源码地址:https://gitee.com/jinxia ...

  7. A4纸网页打印中对应像素的设定和换算

    最近开发项目时遇到了网页打印的问题,这是问题之二,打印宽度设置 在公制长度单位与屏幕分辨率进行换算时,必须用到一个DPI(Dot PerInch)指标.  经过我仔细的测试,发现了网页打印中,默认采用 ...

  8. pandas 如何判断指定列是否(全部)为NaN(空值)

    判断某列是否有NaN df['$open'].isnull().any() # 判断open这一列列是否有 NaN 判断某列是否全部为NaN df['$open'].isnull().all() # ...

  9. Linux(2)- linux目录结构、shell基本命令

    一.Linux之文档与目录结构 1.Linux文件系统结构 Linux目录结构的组织形式和Windows有很大的不同.Linux没有“盘(如C盘.D盘.E盘)”的概念,而是建立一个根"/&q ...

  10. C# 调用win api获取chrome浏览器中地址

    //FindWindow 查找窗口 //FindWindowEx查找子窗口 //EnumWindows列举屏幕上的所有顶层窗口,如果回调函数成功则返回非零,失败则返回零 //GetWindowText ...