前言:昨天写NOIp2017队列,写+调辗转了3h+,不知道怎么的,就点进了一个神仙的链接,便在今日学习了神仙的fhq_treap。

简介:fhq_treap功能强大,支持splay支持的所有操作,代码简单,仅有两个核心函数\(merge\)和\(split\),更重要的是,它作为无旋的平衡树,是支持可持久化的。

正题:fhq_treap的实现

(0)树的域

对树的每个节点,我们维护

\(ch[2],siz,dat,val\)

分别为左右儿子,子树大小,BST性质的关键字,堆性质的关键字

其中堆是小根堆

(1)split函数

\(void \ split(now,k,\&x,\&y)\)

按照\(k\)值的意义可以有两种方式理解,其一为把以\(now\)为根的子树按照\(BST\)性质的权值按不大于\(k\)和大于\(k\)两种分裂成两颗子树,两颗子树的根分别为\(x\)和\(y\)。

这个函数是递归执行的,有严格的子问题划分性。

我们可以这样描述一次对整棵树的操作:

比较当前根节点权值\(dat[now]\)与\(k\)值

若大于,则根节点和右子树被划分为\(y\)树,当前根为\(now\),\(y\)树的左子树不确定,进入左子树求解子问题

若不大于,则根节点和左子树被划分为\(x\)树,当前根为\(now\),\(x\)树的右子树不确定,进入右子树求解子问题

复杂度分析:进入节点所构成的路径相当于对平衡树做了一次查询值为\(k\)的点的操作,复杂度与树的深度相关,根据\(treap\)的随机性,可以认为是\(O(logn)\)

代码实现:

void split(int now,int k,int &x,int &y)//把小于等于k的树分在x上
{
if(!now) {x=y=0;return;}
if(dat[now]>k) y=now,split(ls,k,x,ls);
else x=now,split(rs,k,rs,y);
updata(now);
}

其中,\(ls\),\(rs\)为宏定义的左右儿子,\(updata\)为更新节点的大小\(siz\)

另一种\(k\)值的意义为树中排名为\(k\)的节点,实现起来差不多

(2)merge函数

\(int \ merge(int \ x,int \ y)\)

意义为:把以\(x\)为根的子树和以\(y\)值为根的子树合并,返回新根节点。

注意这里有要求:以\(x\)值为根的子树的BST性质的最大节点小于以\(y\)为根的子树的最小节点。也就是说,这两棵子树本来就是在BST是一颗完全小于另外一颗,我们只需要在合并时保证堆性质即可。

这个函数是仍然递归执行的,有严格的子问题划分性。

我们可以这样描述一次对整棵树的操作:

比较两个根节点的\(val\)

若\(val[x]<val[y]\),好的当前根就是\(x\)了,\(x\)的左子树不用管了,我们进入\(x\)的右子树和\(y\)继续玩

否则,差不多啊反过来就行了

复杂度分析:两颗子树你一下我一下的走到了底,复杂度与子树的深度之和相关,可以认为是\(O(logn)\)

代码实现:

int Merge(int x,int y)//左树的权值小于右树
{
if(!x||!y) return x+y;
if(val[x]<val[y])
{
ch[x][1]=Merge(ch[x][1],y);
updata(x);
return x;
}
else
{
ch[y][0]=Merge(x,ch[y][0]);
updata(y);
return y;
}
}

(3)其他常见操作

有了功能强大的\(split\)和\(merge\),我们就可以很轻松的执行其他操作了

\(insert(k)\)

实现:把树按\(k\)分裂成两个,新建一个点再合并回去

代码:

void Insert(int k)
{
int x,y;
split(root,k,x,y);
root=Merge(Merge(x,New(k)),y);
}

\(extrack(k)\)//删除

实现:把树先分裂成两个,再把含\(k\)的那一颗把\(k\)单独分出来。注意如果有重复元素,单独的\(k\)构成的子树只删除根节点就够了。最后合并回去。

代码:

void extrack(int k)
{
int x,y,z;
split(root,k,x,y);
split(x,k-1,x,z);
z=Merge(ch[z][0],ch[z][1]);
root=Merge(x,Merge(z,y));
}

(4) 实例 洛谷P3369普通平衡树

Code:

#include <cstdio>
#include <cstdlib>
#define ls ch[now][0]
#define rs ch[now][1]
const int N=100010;
int siz[N],ch[N][2],dat[N],val[N],tot,root;
void updata(int now)
{
siz[now]=siz[ls]+siz[rs]+1;
}
void split(int now,int k,int &x,int &y)//把小于等于k的树分在x上
{
if(!now) {x=y=0;return;}
if(dat[now]>k) y=now,split(ls,k,x,ls);
else x=now,split(rs,k,rs,y);
updata(now);
}
int Merge(int x,int y)//左树的权值小于右树
{
if(!x||!y) return x+y;
if(val[x]<val[y])
{
ch[x][1]=Merge(ch[x][1],y);
updata(x);
return x;
}
else
{
ch[y][0]=Merge(x,ch[y][0]);
updata(y);
return y;
}
}
int New(int k)
{
siz[++tot]=1;dat[tot]=k;val[tot]=rand();
return tot;
}
void Insert(int k)
{
int x,y;
split(root,k,x,y);
root=Merge(Merge(x,New(k)),y);
}
void extrack(int k)
{
int x,y,z;
split(root,k,x,y);
split(x,k-1,x,z);
z=Merge(ch[z][0],ch[z][1]);
root=Merge(x,Merge(z,y));
}
void Rank(int k)
{
int x,y;
split(root,k-1,x,y);
printf("%d\n",siz[x]+1);
root=Merge(x,y);
}
void frank(int now,int x)
{
while(233)
{
if(siz[ls]>=x) now=ls;
else if(siz[ls]+1<x) x-=siz[ls]+1,now=rs;
else {printf("%d\n",dat[now]);return;}
}
}
void pre(int k)
{
int x,y;
split(root,k-1,x,y);
frank(x,siz[x]);
root=Merge(x,y);
}
void suc(int k)
{
int x,y;
split(root,k,x,y);
frank(y,1);
root=Merge(x,y);
}
int main()
{
int t,opt,x;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&opt,&x);
if(opt==1) Insert(x);
else if(opt==2) extrack(x);
else if(opt==3) Rank(x);
else if(opt==4) frank(root,x);
else if(opt==5) pre(x);
else suc(x);
}
return 0;
}

2018.7.28

fhq_treap 学习笔记的更多相关文章

  1. [总结] fhq_Treap 学习笔记

    无旋版 $Treap$. 只需要两个操作即可达到 $splay$ 的所有功能 1.$split$ 它的主要思想就是把一个 $Treap$ 分成两个. $split$ 操作有两种类型,一种是按照权值分配 ...

  2. Treap与fhq_Treap学习笔记

    1.普通Treap 通过左右旋来维护堆的性质 左右旋是不改变中序遍历的 #include<algorithm> #include<iostream> #include<c ...

  3. js学习笔记:webpack基础入门(一)

    之前听说过webpack,今天想正式的接触一下,先跟着webpack的官方用户指南走: 在这里有: 如何安装webpack 如何使用webpack 如何使用loader 如何使用webpack的开发者 ...

  4. PHP-自定义模板-学习笔记

    1.  开始 这几天,看了李炎恢老师的<PHP第二季度视频>中的“章节7:创建TPL自定义模板”,做一个学习笔记,通过绘制架构图.UML类图和思维导图,来对加深理解. 2.  整体架构图 ...

  5. PHP-会员登录与注册例子解析-学习笔记

    1.开始 最近开始学习李炎恢老师的<PHP第二季度视频>中的“章节5:使用OOP注册会员”,做一个学习笔记,通过绘制基本页面流程和UML类图,来对加深理解. 2.基本页面流程 3.通过UM ...

  6. 2014年暑假c#学习笔记目录

    2014年暑假c#学习笔记 一.C#编程基础 1. c#编程基础之枚举 2. c#编程基础之函数可变参数 3. c#编程基础之字符串基础 4. c#编程基础之字符串函数 5.c#编程基础之ref.ou ...

  7. JAVA GUI编程学习笔记目录

    2014年暑假JAVA GUI编程学习笔记目录 1.JAVA之GUI编程概述 2.JAVA之GUI编程布局 3.JAVA之GUI编程Frame窗口 4.JAVA之GUI编程事件监听机制 5.JAVA之 ...

  8. seaJs学习笔记2 – seaJs组建库的使用

    原文地址:seaJs学习笔记2 – seaJs组建库的使用 我觉得学习新东西并不是会使用它就够了的,会使用仅仅代表你看懂了,理解了,二不代表你深入了,彻悟了它的精髓. 所以不断的学习将是源源不断. 最 ...

  9. CSS学习笔记

    CSS学习笔记 2016年12月15日整理 CSS基础 Chapter1 在console输入escape("宋体") ENTER 就会出现unicode编码 显示"%u ...

随机推荐

  1. python import vs from import

    https://stackoverflow.com/questions/9439480/from-import-vs-import

  2. 三年同行,质造未来,腾讯WeTest五大服务免费体验

    WeTest 导读 2018年10月26日,腾讯WeTest将正式迎来三周岁生日.三周年庆典期间,只要在WeTest平台注册的用户,均可免费体验标准兼容.云真机.压测大师.手游安全扫描.应用安全扫描等 ...

  3. 第十五届北京师范大学程序设计竞赛现场决赛题解&源码(A.思维,C,模拟,水,坑,E,几何,思维,K,字符串处理)

    #include <bits/stdc++.h> using namespace std; int main() { int T,n,a,b; while(cin>>T) { ...

  4. 安装SQLSEVER与MySQL

    昨天装了一整填的SQLSEVER,今天是把昨天遗留的问题给重新整合一下,上午安装MySQL的时候,是在网上找的帖子通过压缩包安装的,捣鼓了一上午,下午花不到一个小时, 去安装好了,我觉得通过压缩包安装 ...

  5. JavaScript 常用正则示例

    1. trim功能(清除字符串两端空格) String.prototype.trim = function() {  return this.replace(/(^\s+)|(\s+$)/g, '') ...

  6. 洛谷 P1706 全排列问题 :STL / dfs

    题目描述 输出自然数1到n所有不重复的排列,即n的全排列,要求所产生的任一数字序列中不允许出现重复的数字. 输入输出格式 输入格式: n(1≤n≤9) 输出格式: 由1-n组成的所有不重复的数字序列, ...

  7. 【转载】inotify+rsync实时同步 解决同步慢问题 (转载备记)

    原文地址:http://www.ttlsa.com/web/let-infotify-rsync-fast/ 背景 我们公司在用inotify+rsync做实时同步,来解决分布式集群文件一致性的问题. ...

  8. 实战小项目之ffmpeg推流yolo视频实时检测

    之前实现了yolo图像的在线检测,这次主要完成远程视频的检测.主要包括推流--収流--检测显示三大部分 首先说一下推流,主要使用ffmpeg命令进行本地摄像头的推流,为了实现首屏秒开使用-g设置gop ...

  9. Fluent Python: Classmethod vs Staticmethod

    Fluent Python一书9.4节比较了 Classmethod 和 Staticmethod 两个装饰器的区别: 给出的结论是一个非常有用(Classmethod), 一个不太有用(Static ...

  10. Python如何运行

    Python是一种解释型语言,在执行Python的时,解释器将源代码source code翻译成字节码byte code,然后byte code交给Python虚拟机PVM去执行,整个流程如下图所示: ...