题目描述

Linux用户和OSX用户一定对软件包管理器不会陌生。通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管理器会帮助你从软件源下载软件包,同时自动解决所有的依赖(即下载安装这个软件包的安装所依赖的其它软件包),完成所有的配置。Debian/Ubuntu使用的apt-get,Fedora/CentOS使用的yum,以及OSX下可用的homebrew都是优秀的软件包管理器。

你决定设计你自己的软件包管理器。不可避免地,你要解决软件包之间的依赖问题。如果软件包A依赖软件包B,那么安装软件包A以前,必须先安装软件包B。同时,如果想要卸载软件包B,则必须卸载软件包A。现在你已经获得了所有的软件包之间的依赖关系。而且,由于你之前的工作,除0号软件包以外,在你的管理器当中的软件包都会依赖一个且仅一个软件包,而0号软件包不依赖任何一个软件包。依赖关系不存在环(若有m(m≥2)个软件包A1,A2,A3,…,Am,其中A1依赖A2,A2依赖A3,A3依赖A4,……,Am−1依赖Am,而Am依赖A1,则称这m个软件包的依赖关系构成环),当然也不会有一个软件包依赖自己。
现在你要为你的软件包管理器写一个依赖解决程序。根据反馈,用户希望在安装和卸载某个软件包时,快速地知道这个操作实际上会改变多少个软件包的安装状态(即安装操作会安装多少个未安装的软件包,或卸载操作会卸载多少个已安装的软件包),你的任务就是实现这个部分。注意,安装一个已安装的软件包,或卸载一个未安装的软件包,都不会改变任何软件包的安装状态,即在此情况下,改变安装状态的软件包数为0。

输入

输入文件的第1行包含1个正整数n,表示软件包的总数。软件包从0开始编号。

随后一行包含n−1个整数,相邻整数之间用单个空格隔开,分别表示1,2,3,…,n−2,n−1号软件包依赖的软件包的编号。
接下来一行包含1个正整数q,表示询问的总数。
之后q行,每行1个询问。询问分为两种:
installx:表示安装软件包x
uninstallx:表示卸载软件包x
你需要维护每个软件包的安装状态,一开始所有的软件包都处于未安装状态。对于每个操作,你需要输出这步操作会改变多少个软件包的安装状态,随后应用这个操作(即改变你维护的安装状态)。

输出

输出文件包括q行。

输出文件的第i行输出1个整数,为第i步操作中改变安装状态的软件包数。

样例输入

7
0 0 0 1 1 5
5
install 5
install 6
uninstall 1
install 4
uninstall 0

样例输出

3
1
3
2
3

提示

一开始所有的软件包都处于未安装状态。

安装 5 号软件包,需要安装 0,1,5 三个软件包。

之后安装 6 号软件包,只需要安装 6 号软件包。此时安装了 0,1,5,6 四个软件包。

卸载 1 号软件包需要卸载 1,5,6 三个软件包。此时只有 0 号软件包还处于安装状态。

之后安装 4 号软件包,需要安装 1,4 两个软件包。此时 0,1,4 处在安装状态。

最后,卸载 0 号软件包会卸载所有的软件包。

n=100000

q=100000


题解

树链剖分水题

设安装为1,未安装为0.

安装时先查询从x到0有多少个未安装的(即deep[x]+1-安装的),然后全部改为1.

卸载时先查询x子树有多少个安装的,然后全部改为0.

因为树剖的pos实际上就是dfs序,所以子树必然是连续的。

线段树维护sum,区间修改,区间查询,水过。

节点是从0开始的,dfs2时注意细节。

#include <cstdio>
#include <cstring>
#define lson l , mid , x << 1
#define rson mid + 1 , r , x << 1 | 1
#define N 100100
int fa[N] , bl[N] , deep[N] , si[N] , pos[N] , tot;
int head[N] , to[N] , next[N] , cnt;
int sum[N << 2] , tag[N << 2] , n;
char str[20];
inline int read()
{
int num = 0;
char ch;
while(ch < '0' || ch > '9') ch = getchar();
while(ch >= '0' && ch <= '9') num = num * 10 + ch - '0' , ch = getchar();
return num;
}
void add(int x , int y)
{
to[++cnt] = y;
next[cnt] = head[x];
head[x] = cnt;
}
void dfs1(int x)
{
int i;
si[x] = 1;
for(i = head[x] ; i ; i = next[i])
{
deep[to[i]] = deep[x] + 1;
dfs1(to[i]);
si[x] += si[to[i]];
}
}
void dfs2(int x , int c)
{
int i , k = n + 1;
pos[x] = ++tot;
bl[x] = c;
for(i = head[x] ; i ; i = next[i])
if(si[to[i]] > si[k])
k = to[i];
if(k != n + 1)
{
dfs2(k , c);
for(i = head[x] ; i ; i = next[i])
if(to[i] != k)
dfs2(to[i] , to[i]);
}
}
void pushup(int x)
{
sum[x] = sum[x << 1] + sum[x << 1 | 1];
}
void pushdown(int x , int m)
{
if(tag[x] != -1)
{
sum[x << 1] = tag[x] * (m - (m >> 1));
sum[x << 1 | 1] = tag[x] * (m >> 1);
tag[x << 1] = tag[x << 1 | 1] = tag[x];
tag[x] = -1;
}
}
void update(int b , int e , int a , int l , int r , int x)
{
if(b <= l && r <= e)
{
sum[x] = a * (r - l + 1);
tag[x] = a;
return;
}
pushdown(x , r - l + 1);
int mid = (l + r) >> 1;
if(b <= mid) update(b , e , a , lson);
if(e > mid) update(b , e , a , rson);
pushup(x);
}
int query(int b , int e , int l , int r , int x)
{
if(b <= l && r <= e)
return sum[x];
pushdown(x , r - l + 1);
int mid = (l + r) >> 1 , ans = 0;
if(b <= mid) ans += query(b , e , lson);
if(e > mid) ans += query(b , e , rson);
return ans;
}
void solveupdate(int x)
{
while(bl[x])
{
update(pos[bl[x]] , pos[x] , 1 , 1 , n , 1);
x = fa[bl[x]];
}
update(1 , pos[x] , 1 , 1 , n , 1);
}
int solvequery(int x)
{
int ans = 0;
while(bl[x])
{
ans += query(pos[bl[x]] , pos[x] , 1 , n , 1);
x = fa[bl[x]];
}
ans += query(1 , pos[x] , 1 , n , 1);
return ans;
}
int main()
{
int i , q , x;
n = read();
for(i = 1 ; i < n ; i ++ )
{
fa[i] = read();
add(fa[i] , i);
}
dfs1(0);
dfs2(0 , 0);
memset(tag , -1 , sizeof(tag));
q = read();
while(q -- )
{
scanf("%s" , str);
x = read();
if(str[0] == 'i')
{
printf("%d\n" , deep[x] - solvequery(x) + 1);
solveupdate(x);
}
else
{
printf("%d\n" , query(pos[x] , pos[x] + si[x] - 1 , 1 , n , 1));
update(pos[x] , pos[x] + si[x] - 1 , 0 , 1 , n , 1);
}
}
return 0;
}

【bzoj4196】[Noi2015]软件包管理器 树链剖分+线段树的更多相关文章

  1. bzoj 4196 [Noi2015]软件包管理器 (树链剖分+线段树)

    4196: [Noi2015]软件包管理器 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2852  Solved: 1668[Submit][Sta ...

  2. [UOJ#128][BZOJ4196][Noi2015]软件包管理器

    [UOJ#128][BZOJ4196][Noi2015]软件包管理器 试题描述 Linux用户和OSX用户一定对软件包管理器不会陌生.通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管 ...

  3. 【BZOJ-2325】道馆之战 树链剖分 + 线段树

    2325: [ZJOI2011]道馆之战 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 1153  Solved: 421[Submit][Statu ...

  4. 【BZOJ2243】[SDOI2011]染色 树链剖分+线段树

    [BZOJ2243][SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的 ...

  5. BZOJ2243 (树链剖分+线段树)

    Problem 染色(BZOJ2243) 题目大意 给定一颗树,每个节点上有一种颜色. 要求支持两种操作: 操作1:将a->b上所有点染成一种颜色. 操作2:询问a->b上的颜色段数量. ...

  6. POJ3237 (树链剖分+线段树)

    Problem Tree (POJ3237) 题目大意 给定一颗树,有边权. 要求支持三种操作: 操作一:更改某条边的权值. 操作二:将某条路径上的边权取反. 操作三:询问某条路径上的最大权值. 解题 ...

  7. bzoj4034 (树链剖分+线段树)

    Problem T2 (bzoj4034 HAOI2015) 题目大意 给定一颗树,1为根节点,要求支持三种操作. 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子 ...

  8. HDU4897 (树链剖分+线段树)

    Problem Little Devil I (HDU4897) 题目大意 给定一棵树,每条边的颜色为黑或白,起始时均为白. 支持3种操作: 操作1:将a->b的路径中的所有边的颜色翻转. 操作 ...

  9. Aizu 2450 Do use segment tree 树链剖分+线段树

    Do use segment tree Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.bnuoj.com/v3/problem_show ...

  10. 【POJ3237】Tree(树链剖分+线段树)

    Description You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edg ...

随机推荐

  1. WPF 为 PasswordBox 控件添加水印,最低级版

    原因也很直接,老板需要,一开始为TextBox发愁,就找了这个控件凑合用,至于版权什么的,内部工具也不卖钱,而且我不懂英文,也就无视了: Extended WPF Toolkit™ Community ...

  2. python中将datetime对象转化为时间戳

    从mongodb中读取出来的记录中,时间存储在datetime对象里,返回给客户端的却要求是时间戳格式,因此需要将对应的datetime时间转化为时间戳,从stackoverflow上找到同样的问题和 ...

  3. 【BZOJ5290】[HNOI2018]道路(动态规划)

    [BZOJ5290][HNOI2018]道路(动态规划) 题面 BZOJ 洛谷 题目直接到洛谷上看吧 题解 开始写写今年省选的题目 考场上我写了一个模拟退火骗了\(90\)分...然而重测后只剩下45 ...

  4. Java Dictionary Example

    Dictionary class is the abstract class which is parent of any class which uses the key and value pai ...

  5. PHP中array_reduce()使用

    array_reduce — 用回调函数迭代地将数组简化为单一的值 给定一个数组: $ar = array(1,2,3,4,5); 如果要求得这个数组中各个元素之和. 方法一. 很自然的用foreac ...

  6. 爬虫——URL模块爬取糗事百科段子

    最简单的爬取网页找有用信息,难点应该是正则锁定有用信息部分,看了一些其他大神的正则,最后还是决定按照自己理解写一个,果然我头脑相对简单,写出来的粗糙而易理解,也完成了自己想要的需求,就这样了~ # - ...

  7. Selenium 入门到精通系列:三

    Selenium 入门到精通系列 PS:Driver_Element 常用方法 例子 #!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2 ...

  8. TPO-14 C2 Prepare for a career in journalism

    TPO-14 C2 Prepare for a career in journalism 第 1 段 1.Listen to a conversation between a student and ...

  9. Siki_Unity_1-6_C#编程初级教程(未学)

    Unity 1-6 C#编程初级教程 任务1:C#和.Net框架 C#是.Net里的一个成分 2002年微软发布第一个.Net框架(多平台,行业标准,安全性) .Net框架 IDE编程工具 --产生- ...

  10. 博客更换至 www.zhaoch.top

    博客更换至 www.zhaoch.top 随手拷了一些链接 http://www.zhaoch.top/操作系统/linux/常用命令备忘.html http://www.zhaoch.top/操作系 ...