【bzoj4196】[Noi2015]软件包管理器 树链剖分+线段树
题目描述
Linux用户和OSX用户一定对软件包管理器不会陌生。通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管理器会帮助你从软件源下载软件包,同时自动解决所有的依赖(即下载安装这个软件包的安装所依赖的其它软件包),完成所有的配置。Debian/Ubuntu使用的apt-get,Fedora/CentOS使用的yum,以及OSX下可用的homebrew都是优秀的软件包管理器。
输入
输入文件的第1行包含1个正整数n,表示软件包的总数。软件包从0开始编号。
输出
输出文件包括q行。
样例输入
7
0 0 0 1 1 5
5
install 5
install 6
uninstall 1
install 4
uninstall 0
样例输出
3
1
3
2
3
提示
一开始所有的软件包都处于未安装状态。
安装 5 号软件包,需要安装 0,1,5 三个软件包。
之后安装 6 号软件包,只需要安装 6 号软件包。此时安装了 0,1,5,6 四个软件包。
卸载 1 号软件包需要卸载 1,5,6 三个软件包。此时只有 0 号软件包还处于安装状态。
之后安装 4 号软件包,需要安装 1,4 两个软件包。此时 0,1,4 处在安装状态。
最后,卸载 0 号软件包会卸载所有的软件包。
n=100000
q=100000
题解
树链剖分水题
设安装为1,未安装为0.
安装时先查询从x到0有多少个未安装的(即deep[x]+1-安装的),然后全部改为1.
卸载时先查询x子树有多少个安装的,然后全部改为0.
因为树剖的pos实际上就是dfs序,所以子树必然是连续的。
线段树维护sum,区间修改,区间查询,水过。
节点是从0开始的,dfs2时注意细节。
#include <cstdio>
#include <cstring>
#define lson l , mid , x << 1
#define rson mid + 1 , r , x << 1 | 1
#define N 100100
int fa[N] , bl[N] , deep[N] , si[N] , pos[N] , tot;
int head[N] , to[N] , next[N] , cnt;
int sum[N << 2] , tag[N << 2] , n;
char str[20];
inline int read()
{
int num = 0;
char ch;
while(ch < '0' || ch > '9') ch = getchar();
while(ch >= '0' && ch <= '9') num = num * 10 + ch - '0' , ch = getchar();
return num;
}
void add(int x , int y)
{
to[++cnt] = y;
next[cnt] = head[x];
head[x] = cnt;
}
void dfs1(int x)
{
int i;
si[x] = 1;
for(i = head[x] ; i ; i = next[i])
{
deep[to[i]] = deep[x] + 1;
dfs1(to[i]);
si[x] += si[to[i]];
}
}
void dfs2(int x , int c)
{
int i , k = n + 1;
pos[x] = ++tot;
bl[x] = c;
for(i = head[x] ; i ; i = next[i])
if(si[to[i]] > si[k])
k = to[i];
if(k != n + 1)
{
dfs2(k , c);
for(i = head[x] ; i ; i = next[i])
if(to[i] != k)
dfs2(to[i] , to[i]);
}
}
void pushup(int x)
{
sum[x] = sum[x << 1] + sum[x << 1 | 1];
}
void pushdown(int x , int m)
{
if(tag[x] != -1)
{
sum[x << 1] = tag[x] * (m - (m >> 1));
sum[x << 1 | 1] = tag[x] * (m >> 1);
tag[x << 1] = tag[x << 1 | 1] = tag[x];
tag[x] = -1;
}
}
void update(int b , int e , int a , int l , int r , int x)
{
if(b <= l && r <= e)
{
sum[x] = a * (r - l + 1);
tag[x] = a;
return;
}
pushdown(x , r - l + 1);
int mid = (l + r) >> 1;
if(b <= mid) update(b , e , a , lson);
if(e > mid) update(b , e , a , rson);
pushup(x);
}
int query(int b , int e , int l , int r , int x)
{
if(b <= l && r <= e)
return sum[x];
pushdown(x , r - l + 1);
int mid = (l + r) >> 1 , ans = 0;
if(b <= mid) ans += query(b , e , lson);
if(e > mid) ans += query(b , e , rson);
return ans;
}
void solveupdate(int x)
{
while(bl[x])
{
update(pos[bl[x]] , pos[x] , 1 , 1 , n , 1);
x = fa[bl[x]];
}
update(1 , pos[x] , 1 , 1 , n , 1);
}
int solvequery(int x)
{
int ans = 0;
while(bl[x])
{
ans += query(pos[bl[x]] , pos[x] , 1 , n , 1);
x = fa[bl[x]];
}
ans += query(1 , pos[x] , 1 , n , 1);
return ans;
}
int main()
{
int i , q , x;
n = read();
for(i = 1 ; i < n ; i ++ )
{
fa[i] = read();
add(fa[i] , i);
}
dfs1(0);
dfs2(0 , 0);
memset(tag , -1 , sizeof(tag));
q = read();
while(q -- )
{
scanf("%s" , str);
x = read();
if(str[0] == 'i')
{
printf("%d\n" , deep[x] - solvequery(x) + 1);
solveupdate(x);
}
else
{
printf("%d\n" , query(pos[x] , pos[x] + si[x] - 1 , 1 , n , 1));
update(pos[x] , pos[x] + si[x] - 1 , 0 , 1 , n , 1);
}
}
return 0;
}
【bzoj4196】[Noi2015]软件包管理器 树链剖分+线段树的更多相关文章
- bzoj 4196 [Noi2015]软件包管理器 (树链剖分+线段树)
4196: [Noi2015]软件包管理器 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 2852 Solved: 1668[Submit][Sta ...
- [UOJ#128][BZOJ4196][Noi2015]软件包管理器
[UOJ#128][BZOJ4196][Noi2015]软件包管理器 试题描述 Linux用户和OSX用户一定对软件包管理器不会陌生.通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管 ...
- 【BZOJ-2325】道馆之战 树链剖分 + 线段树
2325: [ZJOI2011]道馆之战 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 1153 Solved: 421[Submit][Statu ...
- 【BZOJ2243】[SDOI2011]染色 树链剖分+线段树
[BZOJ2243][SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的 ...
- BZOJ2243 (树链剖分+线段树)
Problem 染色(BZOJ2243) 题目大意 给定一颗树,每个节点上有一种颜色. 要求支持两种操作: 操作1:将a->b上所有点染成一种颜色. 操作2:询问a->b上的颜色段数量. ...
- POJ3237 (树链剖分+线段树)
Problem Tree (POJ3237) 题目大意 给定一颗树,有边权. 要求支持三种操作: 操作一:更改某条边的权值. 操作二:将某条路径上的边权取反. 操作三:询问某条路径上的最大权值. 解题 ...
- bzoj4034 (树链剖分+线段树)
Problem T2 (bzoj4034 HAOI2015) 题目大意 给定一颗树,1为根节点,要求支持三种操作. 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子 ...
- HDU4897 (树链剖分+线段树)
Problem Little Devil I (HDU4897) 题目大意 给定一棵树,每条边的颜色为黑或白,起始时均为白. 支持3种操作: 操作1:将a->b的路径中的所有边的颜色翻转. 操作 ...
- Aizu 2450 Do use segment tree 树链剖分+线段树
Do use segment tree Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.bnuoj.com/v3/problem_show ...
- 【POJ3237】Tree(树链剖分+线段树)
Description You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edg ...
随机推荐
- 成都Uber优步司机奖励政策(1月23日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- GDAL中GDALDataset::RasterIO分块读取的实现
GDALDataset类中的RasterIO函数能够对图像任意指定区域.任意波段的数据按指定数据类型.指定排列方式读入内存和写入文件中,因此可以实现对大影像的分块读.写运算操作.针对特大的影像图像,有 ...
- Mac OS下Android Studio:/dev/kvm not found
在配置模拟器时出现该报错,在网上找了很多教程都没能解决,当然可能是这些教程并不适用于我.总的来说,还是要“对症下药”! 解决方法如下: 点击“系统偏好设置”-“安全性与隐私”,然后会在“通用”这个界面 ...
- IAR调试cc2541串口遇到的Warning : Possible IDATA stack overflow detected
1. 遇到的错误如下,似乎是栈空间不够使用 2. 修改界面如下,增加IDATA的大小,不过最大似乎是0XFF.
- python简单的socket 服务器和客户端
服务器端代码 if "__main__" == __name__: try: sock = socket.socket(socket.AF_INET, socket.SOCK_ST ...
- 一次IPC无法创建的问题
背景说明: 后台子系统都是运行在pc上的linux 系统有多个子系统,有一个子系统负责统一启停其他子系统,这里把这个子系统称为olddriver. ol ...
- textview的阴影线
android:shadowColor="#000000" android:shadowDx="1" android:shadowDy="1" ...
- 汽车VIN码识别/汽车车架号OCR识别,移动端VIN码识别,OCR扫描工具
本文推荐了一项汽车VIN码自动识别技术,用户通过手机“扫一扫”的简单操作,就可以快速识别VIN码,查询到车辆的详细信息,为汽修汽配.二手车交易.车辆监管.查勘理赔提高工作效率. VIN是英文Vehic ...
- MySQL☞having子句
having子句:是跟group by结合使用,对分组以后的数据再次进行过滤,经常跟聚合函数结合使用 格式: select 列名/聚合函数 from 表名 where 条件 group by ...
- (原) MaterialEditor部- UmateriaEditor中 Node编译过程和使用(1)
@author: 白袍小道 转载说明原处 插件同步在GITHUB: DaoZhang_XDZ 最后YY需求(手滑) 1.在理清楚基础套路和细节后,自定义纹理资源,并加入到现有UE材质系统 2. ...