【bzoj4196】[Noi2015]软件包管理器 树链剖分+线段树
题目描述
Linux用户和OSX用户一定对软件包管理器不会陌生。通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管理器会帮助你从软件源下载软件包,同时自动解决所有的依赖(即下载安装这个软件包的安装所依赖的其它软件包),完成所有的配置。Debian/Ubuntu使用的apt-get,Fedora/CentOS使用的yum,以及OSX下可用的homebrew都是优秀的软件包管理器。
输入
输入文件的第1行包含1个正整数n,表示软件包的总数。软件包从0开始编号。
输出
输出文件包括q行。
样例输入
7
0 0 0 1 1 5
5
install 5
install 6
uninstall 1
install 4
uninstall 0
样例输出
3
1
3
2
3
提示
一开始所有的软件包都处于未安装状态。
安装 5 号软件包,需要安装 0,1,5 三个软件包。
之后安装 6 号软件包,只需要安装 6 号软件包。此时安装了 0,1,5,6 四个软件包。
卸载 1 号软件包需要卸载 1,5,6 三个软件包。此时只有 0 号软件包还处于安装状态。
之后安装 4 号软件包,需要安装 1,4 两个软件包。此时 0,1,4 处在安装状态。
最后,卸载 0 号软件包会卸载所有的软件包。
n=100000
q=100000
题解
树链剖分水题
设安装为1,未安装为0.
安装时先查询从x到0有多少个未安装的(即deep[x]+1-安装的),然后全部改为1.
卸载时先查询x子树有多少个安装的,然后全部改为0.
因为树剖的pos实际上就是dfs序,所以子树必然是连续的。
线段树维护sum,区间修改,区间查询,水过。
节点是从0开始的,dfs2时注意细节。
#include <cstdio>
#include <cstring>
#define lson l , mid , x << 1
#define rson mid + 1 , r , x << 1 | 1
#define N 100100
int fa[N] , bl[N] , deep[N] , si[N] , pos[N] , tot;
int head[N] , to[N] , next[N] , cnt;
int sum[N << 2] , tag[N << 2] , n;
char str[20];
inline int read()
{
int num = 0;
char ch;
while(ch < '0' || ch > '9') ch = getchar();
while(ch >= '0' && ch <= '9') num = num * 10 + ch - '0' , ch = getchar();
return num;
}
void add(int x , int y)
{
to[++cnt] = y;
next[cnt] = head[x];
head[x] = cnt;
}
void dfs1(int x)
{
int i;
si[x] = 1;
for(i = head[x] ; i ; i = next[i])
{
deep[to[i]] = deep[x] + 1;
dfs1(to[i]);
si[x] += si[to[i]];
}
}
void dfs2(int x , int c)
{
int i , k = n + 1;
pos[x] = ++tot;
bl[x] = c;
for(i = head[x] ; i ; i = next[i])
if(si[to[i]] > si[k])
k = to[i];
if(k != n + 1)
{
dfs2(k , c);
for(i = head[x] ; i ; i = next[i])
if(to[i] != k)
dfs2(to[i] , to[i]);
}
}
void pushup(int x)
{
sum[x] = sum[x << 1] + sum[x << 1 | 1];
}
void pushdown(int x , int m)
{
if(tag[x] != -1)
{
sum[x << 1] = tag[x] * (m - (m >> 1));
sum[x << 1 | 1] = tag[x] * (m >> 1);
tag[x << 1] = tag[x << 1 | 1] = tag[x];
tag[x] = -1;
}
}
void update(int b , int e , int a , int l , int r , int x)
{
if(b <= l && r <= e)
{
sum[x] = a * (r - l + 1);
tag[x] = a;
return;
}
pushdown(x , r - l + 1);
int mid = (l + r) >> 1;
if(b <= mid) update(b , e , a , lson);
if(e > mid) update(b , e , a , rson);
pushup(x);
}
int query(int b , int e , int l , int r , int x)
{
if(b <= l && r <= e)
return sum[x];
pushdown(x , r - l + 1);
int mid = (l + r) >> 1 , ans = 0;
if(b <= mid) ans += query(b , e , lson);
if(e > mid) ans += query(b , e , rson);
return ans;
}
void solveupdate(int x)
{
while(bl[x])
{
update(pos[bl[x]] , pos[x] , 1 , 1 , n , 1);
x = fa[bl[x]];
}
update(1 , pos[x] , 1 , 1 , n , 1);
}
int solvequery(int x)
{
int ans = 0;
while(bl[x])
{
ans += query(pos[bl[x]] , pos[x] , 1 , n , 1);
x = fa[bl[x]];
}
ans += query(1 , pos[x] , 1 , n , 1);
return ans;
}
int main()
{
int i , q , x;
n = read();
for(i = 1 ; i < n ; i ++ )
{
fa[i] = read();
add(fa[i] , i);
}
dfs1(0);
dfs2(0 , 0);
memset(tag , -1 , sizeof(tag));
q = read();
while(q -- )
{
scanf("%s" , str);
x = read();
if(str[0] == 'i')
{
printf("%d\n" , deep[x] - solvequery(x) + 1);
solveupdate(x);
}
else
{
printf("%d\n" , query(pos[x] , pos[x] + si[x] - 1 , 1 , n , 1));
update(pos[x] , pos[x] + si[x] - 1 , 0 , 1 , n , 1);
}
}
return 0;
}
【bzoj4196】[Noi2015]软件包管理器 树链剖分+线段树的更多相关文章
- bzoj 4196 [Noi2015]软件包管理器 (树链剖分+线段树)
4196: [Noi2015]软件包管理器 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 2852 Solved: 1668[Submit][Sta ...
- [UOJ#128][BZOJ4196][Noi2015]软件包管理器
[UOJ#128][BZOJ4196][Noi2015]软件包管理器 试题描述 Linux用户和OSX用户一定对软件包管理器不会陌生.通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管 ...
- 【BZOJ-2325】道馆之战 树链剖分 + 线段树
2325: [ZJOI2011]道馆之战 Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 1153 Solved: 421[Submit][Statu ...
- 【BZOJ2243】[SDOI2011]染色 树链剖分+线段树
[BZOJ2243][SDOI2011]染色 Description 给定一棵有n个节点的无根树和m个操作,操作有2类: 1.将节点a到节点b路径上所有点都染成颜色c: 2.询问节点a到节点b路径上的 ...
- BZOJ2243 (树链剖分+线段树)
Problem 染色(BZOJ2243) 题目大意 给定一颗树,每个节点上有一种颜色. 要求支持两种操作: 操作1:将a->b上所有点染成一种颜色. 操作2:询问a->b上的颜色段数量. ...
- POJ3237 (树链剖分+线段树)
Problem Tree (POJ3237) 题目大意 给定一颗树,有边权. 要求支持三种操作: 操作一:更改某条边的权值. 操作二:将某条路径上的边权取反. 操作三:询问某条路径上的最大权值. 解题 ...
- bzoj4034 (树链剖分+线段树)
Problem T2 (bzoj4034 HAOI2015) 题目大意 给定一颗树,1为根节点,要求支持三种操作. 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子 ...
- HDU4897 (树链剖分+线段树)
Problem Little Devil I (HDU4897) 题目大意 给定一棵树,每条边的颜色为黑或白,起始时均为白. 支持3种操作: 操作1:将a->b的路径中的所有边的颜色翻转. 操作 ...
- Aizu 2450 Do use segment tree 树链剖分+线段树
Do use segment tree Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.bnuoj.com/v3/problem_show ...
- 【POJ3237】Tree(树链剖分+线段树)
Description You are given a tree with N nodes. The tree’s nodes are numbered 1 through N and its edg ...
随机推荐
- 20154327 Exp3 免杀原理与实践
实践内容 基础问题回答 (1)杀软是如何检测出恶意代码的? 杀毒软件主要靠特征码进行查杀,匹配到即为病毒. 还有通过云查杀,查看云端库中该文件是否属于恶意代码. 跟踪该程序运行起来是否存在恶意行为,来 ...
- C#学习第一阶段——语法基础
C#是一门面向对象的编程语言.在面向对象的程序设计方法中,程序由各种相互交互的对象组成.相同种类的对象具有相同的属性,或者说是在相同的class 中的. 例如,以矩形为例,它具有高(len ...
- js三种存储方式区别
javaScript有三种数据存储方式,分别是: sessionStorage localStorage cookier 相同点:都保存在浏览器端,同源的 不同点: ①传递方式不同 cookie数据始 ...
- leetcode笔记--7 Find the Difference
question: Given two strings s and t which consist of only lowercase letters. String t is generated b ...
- 「LeetCode」0003-Add Two Numbers(Typescript)
分析 代码 /** * @param {ListNode} l1 * @param {ListNode} l2 * @return {ListNode} */ var addTwoNumbers=fu ...
- TPO-15 C1 The campus newspaper's reporter position
TPO-15 C1 The campus newspaper's reporter position 第 1 段 1.Listen to a conversation between a Studen ...
- C if语句判断年龄
#include <stdio.h> int main(int argc, char **argv) { //新建两个变量给变量赋值跟初始化:const int a=45;int c=0; ...
- Linux的基础预备知识
Linux下一切皆文件 1.root@mk-virtual-machine:/home/mk# root:该位置表示当前终端登录的用户名 mk-virtual-machine:/home/m ...
- Docker Remote API v1.24
1. Brief introduction The Remote API has replaced rcli. The daemon listens on unix:///var/run/docker ...
- Paper Reading - CNN+CNN: Convolutional Decoders for Image Captioning
Link of the Paper: https://arxiv.org/abs/1805.09019 Innovations: The authors propose a CNN + CNN fra ...