BZOJ4835 遗忘之树
点分树上的某个点和其某个子树在原树中的连接方式一般来说可以是由该点连向子树内任意一点,这样方案数即为所有子树大小之积。但有一种特殊情况是连接某点后导致编号最小的重心更换,只要去掉这种就行了,具体地可以直接暴力找,因为点分树只有log层,每个点最多被找log次。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 100010
#define P 1000000007
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int T,n,p[N],size[N],t,root,degree[N],ans;
struct data{int to,nxt,len;
}edge[N];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
void dfs(int k)
{
size[k]=;
for (int i=p[k];i;i=edge[i].nxt)
dfs(edge[i].to),size[k]+=size[edge[i].to];
}
int find(int k,int root)
{
int cnt=k<root;
for (int i=p[k];i;i=edge[i].nxt)
cnt+=find(edge[i].to,root);
return cnt;
}
void calc(int k)
{
for (int i=p[k];i;i=edge[i].nxt)
{
if ((size[edge[i].to]<<)<size[k]) ans=1ll*ans*size[edge[i].to]%P;
else ans=1ll*ans*(size[edge[i].to]-find(edge[i].to,k))%P;
calc(edge[i].to);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4835.in","r",stdin);
freopen("bzoj4835.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
T=read();
while (T--)
{
n=read();read();
t=;for (int i=;i<=n;i++) p[i]=,degree[i]=;ans=;
for (int i=;i<n;i++)
{
int x=read(),y=read();
addedge(x,y);degree[y]++;
}
for (int i=;i<=n;i++) if (!degree[i]) root=i;
dfs(root);
calc(root);
printf("%d\n",ans);
}
return ;
}
BZOJ4835 遗忘之树的更多相关文章
- bzoj 4835: 遗忘之树 [树形DP]
4835: 遗忘之树 题意:点分治,选标号最小的重心,上一次重心向下一次重心连有向边,求原树方案数. md我真不知道当初比赛时干什么去了...现在一眼秒啊... \(size[v]=\frac{siz ...
- BZOJ 4835: 遗忘之树
传送门 首先设 $f[x]$ 表示点分树上 $x$ 的子树内的方案数 发现对于 $x$ 的每个儿子 $v$ ,$x$ 似乎可以向 $v$ 子树内的每个节点连边,因为不管怎么连重心都不会变 显然是错的, ...
- HDU2852【树状数组+二分】
额..有点遗忘了树状数组特性了..印象中一直是前缀和,然后一定要记住树状数组是把给出的值(值太大可能可以离散化)也就是点到了区间,然后这个点存的值就是由自己来定了. 题意: 百度. 思路: 树状数组是 ...
- URAL 1992 CVS
CVS 题目连接: http://acm.timus.ru/problem.aspx?space=1&num=1992 Description Yoda: Visit I will the c ...
- 2000条你应知的WPF小姿势 基础篇<40-44 启动关闭,Xaml,逻辑树>
在正文开始之前需要介绍一个人:Sean Sexton. 来自明尼苏达双城的软件工程师.最为出色的是他维护了两个博客:2,000Things You Should Know About C# 和 2,0 ...
- bzoj4785 [Zjoi2017]树状数组
Description 漆黑的晚上,九条可怜躺在床上辗转反侧.难以入眠的她想起了若干年前她的一次悲惨的OI 比赛经历.那是一道基础的树状数组题.给出一个长度为 n 的数组 A,初始值都为 0,接下来进 ...
- 二叉排序树、平衡二叉树、B树&B+树、红黑树的设计动机、缺陷与应用场景
之前面试时曾被问到"如果实现操作系统的线程调度应该采用什么数据结构?",因为我看过ucore的源码,知道ucore是采用斜堆的方式实现的,可以做到O(n)的插入.O(1)的查找.我 ...
- [ZJOI2017]树状数组
Description 漆黑的晚上,九条可怜躺在床上辗转反侧.难以入眠的她想起了若干年前她的一次悲惨的OI 比赛经历.那是一道 基础的树状数组题.给出一个长度为 n 的数组 A,初始值都为 0,接下来 ...
- 从Trie树(字典树)谈到后缀树
转:http://blog.csdn.net/v_july_v/article/details/6897097 引言 常关注本blog的读者朋友想必看过此篇文章:从B树.B+树.B*树谈到R 树,这次 ...
随机推荐
- JS学习 用 arguments 对象模拟函数重载
用 arguments 对象判断传递给函数的参数个数,即可模拟函数重载: function doAdd() { if(arguments.length == 1) { alert(arguments[ ...
- 阅读笔记《JavaScript语言精粹》
阅读笔记<JavaScript语言精粹> 对象 1.检索属性 使用[]和. 2.引用传递 JavaScript的简单数据类型包括数字.字符串.布尔值.null值和undefined值.其它 ...
- andriod学习二 设置开发环境
1.官方环境搭建步骤 http://developer.android.com/sdk/installing/index.html 包括:下载JDK6,Eclipse 3.6, ...
- uvaoj 489 - Hangman Judge(逻辑+写代码能力)
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- 用IDEA编写spark的WordCount
我习惯用Maven项目 所以用IDEA新建一个Maven项目 下面是pom文件 我粘上来吧 <?xml version="1.0" encoding="UTF-8& ...
- Android intel X86 图像渲染
最近几天有个项目需要在intel 芯片的系统上集成我们的视频通话软件.之前只是在ARM平台上使用,对于intel 没测试过,直接运行apk后,本端渲染的图像出错,渲染出的图像很像I420被作为RGB5 ...
- zookeeper应用:屏障、队列、分布式锁
zookeeper工具类: 获取连接实例:创建节点:获取子节点:设置节点数据:获取节点数据:访问控制等. package org.windwant.zookeeper; import org.apac ...
- 【CQOI 2007】 余数求和
题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数.例如G(10, 5)=5 ...
- C++复合类型(结构,共用体,枚举)
•结构是用户定义的类型,而结构的声明定义了这种类型的数据属性. 一.关键字struct声明: 定义了一种新类型 struct inflatable{ char name[20];//结构成员 fl ...
- cenos环境变量配置
Beego环境搭建和bee工具安装使用,以Windows环境为例. 首先,下载并安装好GO并配置好GOROOT和GOPATH环境变量(如果您是用msi包安装的go,那么这些环境变量已经设置好了).并在 ...