题目描述

Farmer John's N cows (1 <= N <= 10,000) are conveniently numbered 1..N. Each cow i takes T(i) units of time to milk. Unfortunately, some cows must be milked before others, owing to the layout of FJ's barn. If cow A must be milked before cow B, then FJ needs to completely finish milking A before he can start milking B.

In order to milk his cows as quickly as possible, FJ has hired a large number of farmhands to help with the task -- enough to milk any number of cows at the same time. However, even though cows can be milked at the same time, there is a limit to how quickly the entire process can proceed due to the constraints requiring certain cows to be milked before others. Please help FJ compute the minimum total time the milking process must take.

农民约翰有N头奶牛(1<=N<=10,000),编号为1...N。每一头奶牛需要T(i)单位的时间来挤奶。不幸的是,由于FJ的仓库布局,一些奶牛要在别的牛之前挤奶。比如说,如果奶牛A必须在奶牛B前挤奶,FJ就需要在给奶牛B挤奶前结束给奶牛A的挤奶。

为了尽量完成挤奶任务,FJ聘请了一大批雇工协助任务——同一时刻足够去给任意数量的奶牛挤奶。然而,尽管奶牛可以同时挤奶,但仍需要满足以上的挤奶先后顺序。请帮助FJ计算挤奶过程中的最小总时间。

输入输出格式

输入格式:

* Line 1: Two space-separated integers: N (the number of cows)
and M (the number of milking constraints; 1 <= M <= 50,000).

* Lines 2..1+N: Line i+1 contains the value of T(i) (1 <= T(i) <= 100,000).

* Lines 2+N..1+N+M: Each line contains two space-separated integers A
and B, indicating that cow A must be fully milked before one can start
milking cow B. These constraints will never form a cycle, so a solution
is always possible.

输出格式:

* Line 1: The minimum amount of time required to milk all cows.

输入输出样例

输入样例#1:

3 1
10
5
6
3 2
输出样例#1:

11

说明

There are 3 cows. The time required to milk each cow is 10, 5, and 6, respectively. Cow 3 must be fully milked before we can start milking cow 2.

Cows 1 and 3 can initially be milked at the same time. When cow 3 is finished with milking, cow 2 can then begin. All cows are finished milking after 11 units of time have elapsed.

Solution:

  解释一手题意:本题就是一棵树(或者森林)中,从每个rd为0的点来走一条路径(需要时间),输出最长的时间。

  本题描述中有一句话很重要(直接得出算法):"若b在a前面,则b必须先挤奶,再去给a挤奶"。

  于是就有了上面的一句话题意,一个根节点要在它的多个儿子节点前被访问,然后找出它到各儿子节点的最长的时间,就是访问该树的最少时间。(画个图自己理解吧,语文太差,描述不好)

  于是想到拓扑排序。于是直接统计入度,在拓扑排序时加两条语句维护每条路径的最长时间就OK了。

代码:

#include<bits/stdc++.h>
#define il inline
#define ll long long
using namespace std;
const int N=,M=;
int n,m,ans,t[N],a[N],cost[N],cnt,to[M],net[M],h[N],rd[N];
il void add(int x,int y)
{
to[++cnt]=y,net[cnt]=h[x],h[x]=cnt,rd[y]++;
}
il int gi()
{
int a=;char x=getchar();bool f=;
while((x<''||x>'')&&x!='-')x=getchar();
if(x=='-')x=getchar(),f=;
while(x>=''&&x<='')a=a*+x-,x=getchar();
return f?-a:a;
}
il void topsort()
{
queue<int>q;
for(int i=;i<=n;i++)
if(!rd[i])q.push(i);
while(!q.empty()){
int x=q.front();q.pop();
cost[x]=a[x]+t[x];
ans=max(ans,cost[x]);
for(int i=h[x];i;i=net[i]){
rd[to[i]]--;
a[to[i]]=max(a[to[i]],cost[x]);
if(!rd[to[i]])q.push(to[i]);
}
}
}
int main()
{
n=gi(),m=gi();
//cout<<n<<m<<endl;
for(int i=;i<=n;i++)t[i]=gi();
int u,v;
while(m--){
u=gi(),v=gi();
add(v,u);
}
topsort();
cout<<ans;
return ;
}

P3074 [USACO13FEB]牛奶调度Milk Scheduling的更多相关文章

  1. 洛谷P3093 [USACO13DEC]牛奶调度Milk Scheduling

    题目描述 Farmer John has N cows that need to be milked (1 <= N <= 10,000), each of which takes onl ...

  2. [USACO13DEC]牛奶调度Milk Scheduling

    原题链接https://www.lydsy.com/JudgeOnline/problem.php?id=4096 容易想到的一个测略就是,优先考虑结束时间小的牛.所以我们对所有牛按照结束时间排序.然 ...

  3. [USACO09OPEN] 工作调度Work Scheduling (贪心/堆)

    [USACO09OPEN] 工作调度Work Scheduling 题意翻译 约翰有太多的工作要做.为了让农场高效运转,他必须靠他的工作赚钱,每项工作花一个单位时间. 他的工作日从0时刻开始,有10^ ...

  4. P1208 [USACO1.3]混合牛奶 Mixing Milk

    P1208 [USACO1.3]混合牛奶 Mixing Milk 题目描述 由于乳制品产业利润很低,所以降低原材料(牛奶)价格就变得十分重要.帮助Marry乳业找到最优的牛奶采购方案. Marry乳业 ...

  5. [洛谷P2852] [USACO06DEC]牛奶模式Milk Patterns

    洛谷题目链接:[USACO06DEC]牛奶模式Milk Patterns 题目描述 Farmer John has noticed that the quality of milk given by ...

  6. 洛谷——P1208 [USACO1.3]混合牛奶 Mixing Milk

    P1208 [USACO1.3]混合牛奶 Mixing Milk 题目描述 由于乳制品产业利润很低,所以降低原材料(牛奶)价格就变得十分重要.帮助Marry乳业找到最优的牛奶采购方案. Marry乳业 ...

  7. 洛谷 P2949 [USACO09OPEN]工作调度Work Scheduling

    P2949 [USACO09OPEN]工作调度Work Scheduling 题目描述 Farmer John has so very many jobs to do! In order to run ...

  8. 洛谷 P1208 [USACO1.3]混合牛奶 Mixing Milk

    P1208 [USACO1.3]混合牛奶 Mixing Milk 题目描述 由于乳制品产业利润很低,所以降低原材料(牛奶)价格就变得十分重要.帮助Marry乳业找到最优的牛奶采购方案. Marry乳业 ...

  9. 题解 P2949 【[USACO09OPEN]工作调度Work Scheduling】

    P2949 [USACO09OPEN]工作调度Work Scheduling 题目标签是单调队列+dp,萌新太弱不会 明显的一道贪心题,考虑排序先做截止时间早的,但我们发现后面可能会出现价值更高却没有 ...

随机推荐

  1. 机器学习实战:KNN代码报错“AttributeError: 'dict' object has no attribute 'iteritems'”

    报错代码: sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True) 解决 ...

  2. 6、Java并发编程:volatile关键字解析

    Java并发编程:volatile关键字解析 volatile这个关键字可能很多朋友都听说过,或许也都用过.在Java 5之前,它是一个备受争议的关键字,因为在程序中使用它往往会导致出人意料的结果.在 ...

  3. Android远程推送笔记

    Android远程推送笔记 Android推送有很多种实现方案,但都没办法和苹果的APNS比拟,这里主要来讲述一下我遇到的问题,和作出的抉择. 首先,为了快速接入,所以就没有自己搭建推送服务器,而是使 ...

  4. MyBatis-mybatis全局映射文件解析

    全局配置文件为mybatis-config.xml 1.properties标签 <properties resource="dbconfig.properties"> ...

  5. php webservice 可能存在的坑

    场景: 今天在生产机器上调用webservice失败 报 ...failed to load external entity... wget一下地址发现报500错误  把wsdl去掉再wget 发现就 ...

  6. git 取消commit

    git如何撤销上一次commit操作 1.第一种情况:还没有push,只是在本地commit git reset --soft|--mixed|--hard <commit_id> git ...

  7. 「日常训练」Regular Bridge(Codeforces Round 306 Div.2 D)

    题意与分析 图论基础+思维题. 代码 #include <bits/stdc++.h> #define MP make_pair #define PB emplace_back #defi ...

  8. mysql数据库基本操作命令

    1.登录命令 mysql -u root -p "password" 2.列出所有数据库 show databases; 3.使用数据库 use db_name 4.列出数据库中所 ...

  9. Selenium自动化测试基础

    如有任何学习问题,可以添加作者微信:lockingfree 目录 Selenium自动化测试基础 Selenium自动化测试第一天(上) Selenium自动化测试第一天(下) Selenium自动化 ...

  10. SQL Sever查询语句集锦

    一. 简单查询简单的Transact-SQL查询只包括选择列表.FROM子句和WHERE子句.它们分别说明所查询列.查询的表或视图.以及搜索条件等. 例如,下面的语句查询testtable表中姓名为“ ...