https://www.lydsy.com/JudgeOnline/problem.php?id=5248

https://www.luogu.org/problemnew/show/P4363#sub

菲菲和牛牛在一块n行m列的棋盘上下棋,菲菲执黑棋先手,牛牛执白棋后手。棋局开始时,棋盘上没有任何棋子,两人轮流在格子上落子,直到填满棋盘时结束。落子的规则是:一个格子可以落子当且仅当这个格子内没有棋子且这个格子的左侧及上方的所有格子内都有棋子。
棋盘的每个格子上,都写有两个非负整数,从上到下第i行中从左到右第j列的格子上的两个整数记作Aij、Bij。在游戏结束后,菲菲和牛牛会分别计算自己的得分:菲菲的得分是所有有黑棋的格子上的Aij之和,牛牛的得分是所有有白棋的格子上的Bij的和。
菲菲和牛牛都希望,自己的得分减去对方的得分得到的结果最大。现在他们想知道,在给定的棋盘上,如果双方都采用最优策略且知道对方会采用最优策略,那么,最终的结果如何

每次添加的棋子构成的形状永远都是一种类梯形的形状,可能状态会少些,更何况n和m才10,于是想到状压dp。

因为棋盘模型能够想到插头dp,那么轮廓线就是显然的棋子的边界。

于是向下的插头为0,向右的插头为1,显然状态才2^(n+m),记忆化搜即可。

题解讲完了接下来是吐槽时间:

woc我**是脑子抽了吧考试时候就写了一个对抗搜索???没写过插头dp可能不是很好想,但是我**好歹学过插头dp啊轮廓线我**怎么没想起来?

完后(知道题解后)我除了很zz的忘写了记忆化搜就是一次A了……

可能我的脑子天生不适合搞OI。

  1. #include<cstdio>
  2. #include<iostream>
  3. #include<queue>
  4. #include<cstring>
  5. #include<algorithm>
  6. #include<cctype>
  7. using namespace std;
  8. const int N=;
  9. const int INF=1e9;
  10. inline int read(){
  11. int X=,w=;char ch=;
  12. while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
  13. while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
  14. return w?-X:X;
  15. }
  16. int n,m,a[N][N],b[N][N],f[<<(N*)][];
  17. int dp(int s,int id){
  18. if(f[s][id]!=INF)return f[s][id];
  19. int c[N<<]={};
  20. int l=-,tmp=s;
  21. while(tmp){int t=tmp-tmp/*;c[++l]=t;tmp>>=;}
  22. l=n+m-;
  23. int ans=id?INF:-INF;
  24. int x=,y=;
  25. for(int i=;i<=l;i++){
  26. if(!c[i])y++;
  27. else x++;
  28. if(i&&c[i-]&&(!c[i])){
  29. tmp=s-(<<i>>)+(<<i);
  30. if(!id)ans=max(ans,dp(tmp,id^)+a[n-x+][y]);
  31. else ans=min(ans,dp(tmp,id^)-b[n-x+][y]);
  32. }
  33. }
  34. return f[s][id]=(ans==INF||ans==-INF)?:ans;
  35. }
  36. int main(){
  37. n=read(),m=read();
  38. for(int i=;i<=n;i++)
  39. for(int j=;j<=m;j++)
  40. a[i][j]=read();
  41. for(int i=;i<=n;i++)
  42. for(int j=;j<=m;j++)
  43. b[i][j]=read();
  44. for(int i=;i<(<<(n+m));i++)
  45. f[i][]=f[i][]=INF;
  46. int res=;
  47. for(int i=;i<n;i++)res+=<<i;
  48. printf("%d\n",dp(res,));
  49. return ;
  50. }

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ5248:[九省联考2018]一双木棋——题解的更多相关文章

  1. [BZOJ5248][九省联考2018]一双木棋(连通性DP,对抗搜索)

    5248: [2018多省省队联测]一双木棋 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 43  Solved: 34[Submit][Status ...

  2. noi省选 [九省联考2018]一双木棋题解(状压dp)

    比浙江简单多了........ 题目转送:https://www.luogu.org/problemnew/show/P4363 分析: 我们注意到n和m都很小,考虑一下状压dp. 显然,棋子摆成的形 ...

  3. 洛谷 P4363 [九省联考2018]一双木棋chess 解题报告

    P4363 [九省联考2018]一双木棋chess 题目描述 菲菲和牛牛在一块\(n\)行\(m\)列的棋盘上下棋,菲菲执黑棋先手,牛牛执白棋后手. 棋局开始时,棋盘上没有任何棋子,两人轮流在格子上落 ...

  4. [九省联考2018]一双木棋chess——搜索+哈希

    题目:bzoj5248 https://www.lydsy.com/JudgeOnline/problem.php?id=5248 洛谷P4363 https://www.luogu.org/prob ...

  5. Luogu4363 [九省联考2018]一双木棋chess 【状压DP】【进制转换】

    题目分析: 首先跑个暴力,求一下有多少种状态,发现只有18xxxx种,然后每个状态有10的转移,所以复杂度大约是200w,然后利用进制转换的技巧求一下每个状态的十进制码就行了. 代码: #includ ...

  6. luogu P4363 [九省联考2018]一双木棋chess

    传送门 对抗搜索都不会,我真是菜死了qwq 首先根据题目条件,可以发现从上到下每一行的棋子数是单调不增的,然后n m都比较小,如果把状态搜出来,可以发现合法状态并不多,所以可以用一个11进制数表示状态 ...

  7. [九省联考2018]一双木棋chess

    题解: 水题吧 首先很显然的是状压或者搜索 考虑一下能不能状压吧 这个东西一定是长成三角形的样子的 所以是可以状压的 相邻两位之间有几个0代表他们差几 这样最多会有2n 然后就可以转移了 由于之前对博 ...

  8. 【题解】Luogu P4363 [九省联考2018]一双木棋chess

    原题传送门 这道题珂以轮廓线dp解决 经过推导,我们珂以发现下一行的棋子比上一行的棋子少(或等于),而且每一行中的棋子都是从左向右依次排列(从头开始,中间没有空隙) 所以每下完一步棋,棋盘的一部分是有 ...

  9. P4363 [九省联考2018]一双木棋chess

    思路 容易发现只能在轮廓线的拐点处落子,所以棋盘的状态可以用一个n+m长度的二进制数表示 转移就是10变成01 代码 #include <cstdio> #include <algo ...

随机推荐

  1. poj3984迷宫问题(dfs+stack)

    迷宫问题 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 35426   Accepted: 20088 Descriptio ...

  2. OSG-简单模型控制

    本文转至http://www.cnblogs.com/shapherd/archive/2010/08/10/osg.html 作者写的比较好,再次收藏,希望更多的人可以看到这个文章 互联网是是一个相 ...

  3. (Python爬虫04)了解通用爬虫和聚焦爬虫,还是理论知识.快速入门可以略过的

    如果现在的你返回N年前去重新学习一门技能,你会咋做? 我会这么干: ...哦,原来这个本事学完可以成为恋爱大神啊, 我要掌握精髓需要这么几个要点一二三四..... 具体的学习步骤是这样的一二三.... ...

  4. TW实习日记:第29-30天

    这两天挺忙,赶工期,改bug.项目现场的同事说客户火大得不行.可是谁叫你们谈工期谈的这么紧,完全不考虑开发的情况,真的是烦人这种事情.这两天遇到的最有难度的一个点就是附件预览,搞这个改到晚上11点. ...

  5. Redis4.0支持的新功能说明

    本文以华为云DCS for Redis版本为例,介绍Redis4.0的新功能.文章转载自华为云帮助中心. 与Redis3.x版本相比,DCS的Redis4.x以上版本,除了开源Redis增加的特性之外 ...

  6. eos教程如何创建eos测试账号并且使用scatter插件

    EOS代币租赁平台 --- Chintai平台已经在Jungle测试网络上部署了,欢迎大家来体验. 地址见: Chintai 公测版 官网是: Chintai 目前测试网络上面需要用到Scatter插 ...

  7. Entity Framework 基本概念

    概念 LINQ to Entities 一种 LINQ 技术,使开发人员可以使用 LINQ 表达式和 LINQ 标准查询运算符,针对实体数据模型 (EDM) 对象上下文创建灵活的强类型化查询. ESQ ...

  8. bootstrapValidator.js,最好用的bootstrap表单验证插件 简单实用方法

    实用方法 1.引入 在有jquery和bootstrap的页面里引入bootstrapValidator.js和bootstrapValidator.css文件 2. 按照bootstrap的表单组件 ...

  9. mysql 复杂查询

    1.同一个表下多次查询: sql语句: select b.* ,(select name from exh_common.medicine_type a where b.p_id = a.id) as ...

  10. object-oriented 第二次作业(2)

    面向对象程序设计自学计划 由于我的英文实在是很差,所以我就没有去考虑看英文的课程视频.网络上的课程有很多,什么学校的也有,一开始我不知道该如何开始选择课程.感觉每个都还可以.后来在群里的看到别人推荐的 ...