#使用数据:UFO数据

#读入数据,该文件以制表符分隔,因此使用read.delim,参数sep设置分隔符为\t

#所有的read函数都把string读成factor类型,这个类型用于表示分类变量,因此将stringsAsFactors设置为False

#header=F表示文件中并没有表头

#na.string='',表示把空元素设置为R中的特殊值NA,即将所有空元素读成NA

ufo<-read.delim('ufo_awesome.tsv',sep='\t',stringsAsFactors=F,header=F,na.string='')

#head(data):查看数据前6行

#tail(data):查看数据后6行

head(ufo)

#添加表头

names(ufo) <- c("DateOccurred", "DateReported","Location", "ShortDescription","Duration","LongDescription")

#由上图看出日期格式为YYYYMMDD,将其转换为R语言中的日期格式

ufo$DateOccurred<-as.Date(ufo$DateOccurred,format='%Y%M%D')

#错误于strptime(x, format, tz = "GMT") : 输入字符串太长,原因是有些日期字符串大于8个字符,因此需要进行处理

#用以下代码查看日期长度不为8的

#nchar函数表示得出字符串长度

head(ufo[which(nchar(ufo$DateOccurred)!=8|nchar(ufo$DateReported)!=8),1])

good.rows <- ifelse(nchar(ufo$DateOccurred) != 8 | nchar(ufo$DateReported) != 8,FALSE,TRUE)

length(which(!good.rows))

#结果有731条记录(中文书是371条,应该是写错了)的日期不是8个字符,可以直接从数据集中删去

ufo <- ufo[good.rows, ]

#接着将所有日期字符串转为R语言中的日期型

ufo$DateOccurred <- as.Date(ufo$DateOccurred, format = "%Y%m%d")

ufo$DateReported <- as.Date(ufo$DateReported, format = "%Y%m%d")

#接下来要清理目击地点数据,原有数据是City,State,将其拆分为两列

#定义一个函数,如果格式不正确返回NA,NA,如果正确返回city state列表

#gsub函数用于替换

get.location <- function(l)
{
split.location <- tryCatch(strsplit(l, ",")[[1]],
error = function(e) return(c(NA, NA)))
clean.location <- gsub("^ ","",split.location)
if (length(clean.location) > 2)
{
return(c(NA,NA))
}
else
{
return(clean.location)
}
}

#接着用lapply函数对ufo的Location每一个记录都采用get.location函数进行处理,结果保存到city.state

city.state <- lapply(ufo$Location, get.location)

#要把城市和州信息作为不同的两列加入数据框中,需要将LIST转为Matrix

#do.call函数表示对city.state的每一条记录都按行合并转换为matrix

location.matrix <- do.call(rbind, city.state)

#用transform函数为ufo添加了两个列

ufo <- transform(ufo,USCity = location.matrix[, 1],USState = location.matrix[, 2],stringsAsFactors = FALSE)

#state.abb是美国州的大写,将不是美国州名的全部转为NA

ufo$USState <- state.abb[match(ufo$USState, state.abb)]

#只保留美国州名的地点的记录,将记录存入ufo.us

ufo.us <- subset(ufo, !is.na(USState))

#观察一下目击时间,从1400年到2010年

summary(ufo.us$DateOccurred)

#画一下直方图看看目击时间分布

quick.hist <- ggplot(ufo.us, aes(x = DateOccurred)) +geom_histogram() + scale_x_date(breaks = "50 years")

print(quick.hist)

#如下图,发现大部分都发生在1960-2010年,我们只关注1990-2010数据

#只取1990年后的数据

ufo.us <- subset(ufo.us, DateOccurred >= as.Date("1990-01-01"))

#再画一次直方图

#我们的目的是发现目击事件的周期性规律,应该按一定周期进行聚合,比如按月聚合,因此需要统计每州每年月的UFO目击次数

#以下代码给ufo.us增加一个新的列是YearMonth,其中提取出目击时间的年和月,strftime是将字符串转成日期型

ufo.us$YearMonth <- strftime(ufo.us$DateOccurred, format = "%Y-%m")

#使用ddply函数,对ufo.us,按USState和YearMonth进行聚合

sightings.counts <- ddply(ufo.us, .(USState,YearMonth), nrow)

#没有1990年2月和4月,因此需要把目击次数为0的月份也加进去

#先建一个包括所有月份的时间序列数据到date.range

date.range <- seq.Date(from = as.Date(min(ufo.us$DateOccurred)),to = as.Date(max(ufo.us$DateOccurred)),by = "month")

#然后转为年-月的格式到date.strings

date.strings <- strftime(date.range, "%Y-%m")

#接着需要建一个包含所有年月和州的数据框

states.dates <- lapply(state.abb, function(s) cbind(s, date.strings))

states.dates <- data.frame(do.call(rbind, states.dates),stringsAsFactors = FALSE)

#合并数据all = TRUE表示没匹配的也要包含进来并且设为NA

all.sightings <- merge(states.dates,sightings.counts,by.x = c("s", "date.strings"),by.y = c("USState", "YearMonth"),all = TRUE)

names(all.sightings) <- c("State", "YearMonth", "Sightings")

#将为NA的全部设为0

all.sightings$Sightings[is.na(all.sightings$Sightings)] <- 0

#将date.strings转为日期型

all.sightings$YearMonth <- as.Date(rep(date.range, length(state.abb)))

#将州名转换为分类变量

all.sightings$State <- as.factor(all.sightings$State)

#画图,geom_line表示曲线图,facet_wrap表示按State分类变量,每个因子画一个图,因为有50个州,规定10行5列.

#theme_bw表示用白色背景和黑色网格线画图

state.plot <- ggplot(all.sightings, aes(x = YearMonth,y = Sightings)) +
geom_line(aes(color = "darkblue")) +
facet_wrap(~State, nrow = 10, ncol = 5) +
theme_bw() +
scale_color_manual(values = c("darkblue" = "darkblue"), guide = "none") +
scale_x_date(breaks = "5 years") +
xlab("Years") +
ylab("Number of Sightings") +
ggtitle("Number of UFO sightings by Month-Year and U.S. State (1990-2010)")

Machine Learning for hackers读书笔记(一)使用R语言的更多相关文章

  1. Machine Learning for hackers读书笔记(七)优化:密码破译

    #凯撒密码:将每一个字母替换为字母表中下一位字母,比如a变成b. english.letters <- c('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i' ...

  2. Machine Learning for hackers读书笔记(六)正则化:文本回归

    data<-'F:\\learning\\ML_for_Hackers\\ML_for_Hackers-master\\06-Regularization\\data\\' ranks < ...

  3. Machine Learning for hackers读书笔记(三)分类:垃圾邮件过滤

    #定义函数,打开每一个文件,找到空行,将空行后的文本返回为一个字符串向量,该向量只有一个元素,就是空行之后的所有文本拼接之后的字符串 #很多邮件都包含了非ASCII字符,因此设为latin1就可以读取 ...

  4. Machine Learning for hackers读书笔记_一句很重要的话

    为了培养一个机器学习领域专家那样的直觉,最好的办法就是,对你遇到的每一个机器学习问题,把所有的算法试个遍,直到有一天,你凭直觉就知道某些算法行不通.

  5. Machine Learning for hackers读书笔记(十二)模型比较

    library('ggplot2')df <- read.csv('G:\\dataguru\\ML_for_Hackers\\ML_for_Hackers-master\\12-Model_C ...

  6. Machine Learning for hackers读书笔记(十)KNN:推荐系统

    #一,自己写KNN df<-read.csv('G:\\dataguru\\ML_for_Hackers\\ML_for_Hackers-master\\10-Recommendations\\ ...

  7. Machine Learning for hackers读书笔记(九)MDS:可视化地研究参议员相似性

    library('foreign') library('ggplot2') data.dir <- file.path('G:\\dataguru\\ML_for_Hackers\\ML_for ...

  8. Machine Learning for hackers读书笔记(八)PCA:构建股票市场指数

    library('ggplot2') prices <- read.csv('G:\\dataguru\\ML_for_Hackers\\ML_for_Hackers-master\\08-PC ...

  9. Machine Learning for hackers读书笔记(五)回归模型:预测网页访问量

    线性回归函数 model<-lm(Weight~Height,data=?) coef(model):得到回归直线的截距 predict(model):预测 residuals(model):残 ...

随机推荐

  1. 如何理解JS项目

    JS API(DOM/PhoneGap/Cordova/NodeJS/Library/Android/MongoDB....)最基础,可以看懂一行代码. -------> JS OOP, JS语 ...

  2. 提高Asp.Net应用程序性能的十大方法(译感)

    译完了提高Asp.Net应用程序的十大方法这篇文章,仔细想其中提到的每一条,在这里结合我的项目来谈谈.第一条:返回多个结果集因为我的项目中所有对数据库的访问的sql语句都是通过调用存储过程实现的,所以 ...

  3. JS对象类型的确定

    JS是松散类型的语言,这一点JS的对象表现得尤为突出.那么如何来确定JS对象的具体类型呢? 首先,我们可以使用typeof运算符确定其基本类型(number,object,function,undef ...

  4. MySQL 操作表命令

    新建表: create table Itemcats (id int(11) not null auto_increment, primary key (id)) engine=MyISAM auto ...

  5. POJ 1507

    #include<iostream> #include<stdio.h> using namespace std; #include<iomanip> double ...

  6. Javascript实现 图片的无缝滚动

    <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <m ...

  7. daatable动态创建

    方法一: DataTable tblDatas = new DataTable("Datas");DataColumn dc = null;dc = tblDatas.Column ...

  8. 李洪强iOS开发之【Objective-C】07-自定义构造方法和description方法

    知识回顾 在前面已经介绍了如何定义类和创建并初始化对象,比如有Student这个类 1.Student.h 1 #import <Foundation/Foundation.h> 2 3 ...

  9. 对QT的理解——能在公司里不做Java,不做很偏门的产品,不使用偏门的语言,还有钱挣,要有感恩的心

    我的理解: QT做应用软件可以很强大,界面足够漂亮(最有意思的是QSS,让我刮目相看),应该是足够了.同时QT也提供了源码,不过超级复杂,难以理解,所以还是无法深入底层.另外它提供了一个额外的好处,就 ...

  10. centos磁盘爆满,查找大文件并清理

    今天发现vps敲入crontab -e 居然提示 “Disk quota exceeded” 无法编辑.于是"df -h"查了查发现系统磁盘空间使用100%了.最后定位到是/var ...