标签(空格分隔): 机器学习


(最近被一波波的笔试+面试淹没了,但是在有两次面试时被问到了同一个问题:K-Means算法的收敛性。在网上查阅了很多资料,并没有看到很清晰的解释,所以希望可以从K-Means与EM算法的关系,以及EM算法本身的收敛性证明中找到蛛丝马迹,下次不要再掉坑啊。。)

EM算法的收敛性

1.通过极大似然估计建立目标函数:

\(l(\theta) = \sum_{i=1}^{m}log\ p(x;\theta) = \sum_{i=1}^{m}log\sum_{z}p(x,z;\theta)\)

通过EM算法来找到似然函数的极大值,思路如下:
希望找到最好的参数\(\theta\),能够使最大似然目标函数取最大值。但是直接计算 \(l(\theta) = \sum_{i=1}^{m}log\sum_{z}p(x,z;\theta)\)比较困难,所以我们希望能够找到一个不带隐变量\(z\)的函数\(\gamma(x|\theta) \leq l(x,z;\theta)\)恒成立,并用\(\gamma(x|\theta)\)逼近目标函数。
如下图所示:

  • 在绿色线位置,找到一个\(\gamma\)函数,能够使得该函数最接近目标函数,
  • 固定\(\gamma\)函数,找到最大值,然后更新\(\theta\),得到红线;
  • 对于红线位置的参数\(\theta\):
  • 固定\(\theta\),找到一个最好的函数\(\gamma\),使得该函数更接近目标函数。
    重复该过程,直到收敛到局部最大值。

2. 从Jensen不等式的角度来推导

令\(Q_{i}\)是\(z\)的一个分布,\(Q_{i} \geq 0\),则:

$l(\theta) = \sum_{i=1}^{m}log\sum_{z^{(i)}}p(x^{(i)},z^{(i)};\theta) $
$ = \sum_{i=1}^{m}log\sum_{z^{(i)}}Q_{i}(z^{(i)})\frac{p(x^{(i)},z^{(i)};\theta)}{Q_{i}(z^{(i)})}$
\(\geq \sum_{i=1}^{m}\sum_{z^{(i)}}Q_{i}(z^{(i)})log\frac{p(x^{(i)},z^{(i)};\theta)}{Q_{i}(z^{(i)})}\)

(对于log函数的Jensen不等式)

3.使等号成立的Q

尽量使\(\geq\)取等号,相当于找到一个最逼近的下界:也就是Jensen不等式中,\(\frac{f(x_{1})+f(x_{2})}{2} \geq f(\frac{x_{1}+x_{2}}{2})\),当且仅当\(x_{1} = x_{2}\)时等号成立(很关键)

对于EM的目标来说:应该使得\(log\)函数的自变量恒为常数,即:
\(\frac{p(x^{(i)},z^{(i)};\theta)}{Q_{i}(z^{(i)})} = C\)
也就是分子的联合概率与分母的z的分布应该成正比,而由于\(Q\)是z的一个分布,所以应该保证\(\sum_{z}Q_{i}(z^{(i)}) = 1\)
故\(Q = \frac{p}{p对z的归一化因子}\)

\(Q_{i}(z^{(i)}) = \frac{p(x^{(i)},z^{(i)};\theta)}{\sum_{z}p(x^{(i)},z^{(i)};\theta)}\)
\(= \frac{p(x^{(i)},z^{(i)};\theta)}{p(x^{(i)};\theta)} = p(z^{(i)}|x^{(i)};\theta)\)

4.EM算法的框架

由上面的推导,可以得出EM的框架:

回到最初的思路,寻找一个最好的\(\gamma\)函数来逼近目标函数,然后找\(\gamma\)函数的最大值来更新参数\(\theta\):

  • E-step: 根据当前的参数\(\theta\)找到一个最优的函数\(\gamma\)能够在当前位置最好的逼近目标函数;
  • M-step: 对于当前找到的\(\gamma\)函数,求函数取最大值时的参数\(\theta\)的值。

K-Means的收敛性

通过上面的分析,我们可以知道,在EM框架下,求得的参数\(\theta\)一定是收敛的,能够找到似然函数的最大值。那么K-Means是如何来保证收敛的呢?

目标函数

假设使用平方误差作为目标函数:
\(J(\mu_{1},\mu_{2},...,\mu_{k}) = \frac{1}{2}\sum_{j=1}^{K}\sum_{i=1}^{N}(x_{i}-\mu_{j})^{2}\)

E-Step

固定参数\(\mu_{k}\), 将每个数据点分配到距离它本身最近的一个簇类中:
\[
\gamma_{nk} =
\begin{cases}
1, & \text{if $k = argmin_{j}||x_{n}-\mu_{j}||^{2}$ } \\
0, & \text{otherwise}
\end{cases}
\]

M-Step

固定数据点的分配,更新参数(中心点)\(\mu_{k}\):
\(\mu_{k} = \frac{\sum_{n}\gamma_{nk}x_{n}}{\sum_{n}\gamma_{nk}}\)

所以,答案有了吧。为啥K-means会收敛呢?目标是使损失函数最小,在E-step时,找到一个最逼近目标的函数\(\gamma\);在M-step时,固定函数\(\gamma\),更新均值\(\mu\)(找到当前函数下的最好的值)。所以一定会收敛了~

再论EM算法的收敛性和K-Means的收敛性的更多相关文章

  1. EM算法总结

    EM算法总结 - The EM Algorithm EM是我一直想深入学习的算法之一,第一次听说是在NLP课中的HMM那一节,为了解决HMM的参数估计问题,使用了EM算法.在之后的MT中的词对齐中也用 ...

  2. EM算法(Expectation Maximization Algorithm)初探

    1. 通过一个简单的例子直观上理解EM的核心思想 0x1: 问题背景 假设现在有两枚硬币Coin_a和Coin_b,随机抛掷后正面朝上/反面朝上的概率分别是 Coin_a:P1:-P1 Coin_b: ...

  3. 机器学习之高斯混合模型及EM算法

    第一部分: 这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation). 与k-means一样,给定的训练样本是,我们将隐含类 ...

  4. EM算法【转】

    混合高斯模型和EM算法 这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation). 与K-means一样,给定的训练样本是, ...

  5. 【转】EM算法原理

    EM是我一直想深入学习的算法之一,第一次听说是在NLP课中的HMM那一节,为了解决HMM的参数估计问题,使用了EM算法.在之后的MT中的词对齐中也用到了.在Mitchell的书中也提到EM可以用于贝叶 ...

  6. EM 算法求解高斯混合模型python实现

    注:本文是对<统计学习方法>EM算法的一个简单总结. 1. 什么是EM算法? 引用书上的话: 概率模型有时既含有观测变量,又含有隐变量或者潜在变量.如果概率模型的变量都是观测变量,可以直接 ...

  7. EM算法原理详解

    1.引言 以前我们讨论的概率模型都是只含观测变量(observable variable), 即这些变量都是可以观测出来的,那么给定数据,可以直接使用极大似然估计的方法或者贝叶斯估计的方法:但是当模型 ...

  8. EM算法及其推广

    概述 EM算法是一种迭代算法,用于含有隐变量(hidden variable)的概率模型参数的极大似然估计,或极大后验概率估计. EM算法的每次迭代由两步组成:E步,求期望(expectation): ...

  9. EM算法定义及推导

    EM算法是一种迭代算法,传说中的上帝算法,俗人可望不可及.用以含有隐变量的概率模型参数的极大似然估计,或极大后验概率估计 EM算法定义 输入:观测变量数据X,隐变量数据Z,联合分布\(P(X,Z|\t ...

随机推荐

  1. linux中使用软链接时出现 too many levels of symbolic links

    刚开始使用的源文件的路径是相对路径,所以导致标题中的这种错误. 只要用绝对路径表示源文件就好了.如果用相对路径的话,实际相对的是目标文件所在的路径,而在创建链接文件时用的路径是相对于当前的路径.

  2. 一般处理程序 ashx中使用外部Session 出现不存在 解决方案

    MXS&Vincene  ─╄OvЁ  &0000004 ─╄OvЁ  MXS&Vincene MXS&Vincene  ─╄OvЁ:今天很残酷,明天更残酷,后天很美好 ...

  3. 用smack+openfire做即时通讯

    首发:个人博客 必须说明:smack最新的4.1.1,相对之前版本变化很大,而且资料缺乏,官方文档也不好,所以还是用老版本3.2.2吧.这篇博文中的代码是4.1.1版的,但不推荐用它.用openfir ...

  4. U盘启动引导安装linux

    一.U盘引导,安装前的准备 1.U盘一枚,至少2G 2.下载并安装虚拟光驱,这里我用的是UltralSO. 二.制作引导盘 1.打开UltraISO软件,选择文件->打开,打开需要烧录的镜像文件 ...

  5. scala抽象类抽象字段

    package com.test.scala.test /** * 抽象类学习,定义abstact关键字 */ abstract class AbstractClass { val id:Int;// ...

  6. Java的多线程+Socket 后台

    打包好可执行的jar文件之后, 用ftp上传到服务器, 用nohup命令, 让这个服务器在后台运行, 并将输出重定向到log文件中, 命令是: #nohup java -jar MTSServer.j ...

  7. JS调用Java函数--DWR框架

    (1)dwr与ssh框架整合教程dwr框架介绍. DWR(Direct Web Remoting)是一个用于改善web页面与Java类交互的远程服务器端Ajax开源框架,可以帮助开发人员开发包含AJA ...

  8. tcpproxy:基于 Swoole 实现的 TCP 数据包转发工具的方法

    假设我们希望有一台机器A(ip 192.168.1.101)要开放端口6379给用户访问,但可能实际情况是用户无法直接访问到A(ip 192.168.1.101), 但却有一台机器B(ip 192.1 ...

  9. JavaEE基础(二十一)/IO流

    1.IO流(字符流FileReader) 1.字符流是什么 字符流是可以直接读写字符的IO流 字符流读取字符, 就要先读取到字节数据, 然后转为字符. 如果要写出字符, 需要把字符转为字节再写出. 2 ...

  10. js的作用域

    全局代码和两个函数都会形成一个作用域,通过函数是在哪个作用域下创建的来确定作用域的上下级关系.作用域最大的用处是隔离变量,不同作用域下同名变量不会有冲突.