1.buffer使用image的方式:Horizontal 与 Vertical 算法一样, 共需30ms,wait time 19ms.

const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST;
__kernel void ImageGaussianFilterHorizontal(__read_only image2d_t source, // Source image
__write_only image2d_t dest, // Intermediate dest image
const int imgWidth , // Image width
const int imgHeight)
{
const int y = get_global_id();
if(y>=(imgHeight))
return;
const float m_nFilter[] = {/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0}; const int s = ;
const int nStart = ; float lines[];
for(int i=;i<;i++)
lines[i] = read_imagef( source, sampler, (int2) (i-, y) ).x; for(int j=;j<imgWidth;){
float sum = lines[nStart] * m_nFilter[nStart];
#define GaussianTwoLines(m) \
sum += ( (lines[m] + lines[s--m])*m_nFilter[m] );
GaussianTwoLines()
GaussianTwoLines()
GaussianTwoLines()
GaussianTwoLines()
GaussianTwoLines() write_imagef( dest, (int2) (j, y), sum ); for(int i = ; i<s-; i++) lines[i] = lines[i+];
j++;
lines[s-] = read_imagef( source, sampler, (int2) (j+, y) ).x;
}
} __kernel void ImageGaussianFilterVertical(__read_only image2d_t source, // Source image
__write_only image2d_t dest,
const int imgWidth ,
const int imgHeight)
{
const int x = get_global_id();
if(x>=(imgWidth))
return;
const float m_nFilter[] = {/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0}; const int s = ;
const int nStart = ; float lines[];
for(int i=;i<;i++)
lines[i] = read_imagef( source, sampler, (int2) (x ,i-) ).x; for(int j=;j<imgHeight;){
float sum = lines[nStart] * m_nFilter[nStart];
#define GaussianTwoLines(m) \
sum += ( (lines[m] + lines[s--m])*m_nFilter[m] );
GaussianTwoLines()
GaussianTwoLines()
GaussianTwoLines()
GaussianTwoLines()
GaussianTwoLines() write_imagef( dest, (int2) (x, j), sum ); for(int i = ; i<s-; i++) lines[i] = lines[i+];
j++;
lines[s-] = read_imagef( source, sampler, (int2) (x,j+) ).x;
}
}

2.只运行 Horizontal 19ms,wait time 19ms. 注释掉 write_imagef 2.4ms(wait time,run time都是0.0xms)(更新:sum计算被优化,0.x ms就是读image的时间).

a.顺序调整为:

lines[s-1] = read_imagef( source, sampler, (int2) (j+5, y) ).x;

write_imagef( dest, (int2) (j-1, y), sum );

16.9ms,很奇怪sum用固定的0,0.2替代时间只有3.9ms?????把计算部分注释掉,只读写imgage,也是3.9ms, 计算sum的部分被编译器优化掉了?

b. if(sum>0)

lines[s-1] = read_imagef( source, sampler, (int2) (j+5, y) ).x;

write_imagef( dest, (int2) (j-1, y), 0.2 );

如此测试,17ms,看来是sum的计算被优化掉了.

c.if(sum>=0)

j++;

//lines[s-1] = read_imagef( source, sampler, (int2) (j+5, y) ).x;

//write_imagef( dest, (int2) (j-1, y), sum );

只计算,5.7ms,但还是wait time 5.7ms???

3.使用float16 vector 计算,总共耗时15.6 ms,wait time 9.3ms,rum time 6.3ms.使用 __attribute__ 能减少1ms以内.其中Horizontal:wait time 9.4ms,rum time 0.008ms ,Vertical:wait time 0.07ms,rum time 6.4ms.

不知道为什么使用fma指令替代sum+= ,需要近2s,而且localWorksize最大只能32.

使用half16 精度,反而还要17ms,而且结果有1-2的误差。

const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP_TO_EDGE | CLK_FILTER_NEAREST;

__kernel __attribute__((work_group_size_hint(,,)))
void ImageGaussianFilterHorizontal(__read_only image2d_t source, // Source image
__write_only image2d_t dest, // Intermediate dest image
const int imgWidth , // Image width
const int imgHeight)
{
const int y = get_global_id();
if(y>=(imgHeight))
return;
const float m_nFilter[] = {/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0}; #define r(xc,y) read_imagef( source, sampler, (int2) (xc, y) ).x
#define r16(x,y) (float16)( r(x,y),r(x+1,y),r(x+2,y),r(x+3,y),r(x+4,y),r(x+5,y),r(x+6,y),r(x+7,y),\
r(x+,y),r(x+,y),r(x+,y),r(x+,y),r(x+,y),r(x+,y),r(x+,y),r(x+,y)) #define w16(x,y,sum) write_imagef( dest, (int2) (x, y), sum.s0 );write_imagef( dest, (int2) (x+1, y), sum.s1 );\
write_imagef( dest, (int2) (x+, y), sum.s2 );write_imagef( dest, (int2) (x+, y), sum.s3 );\
write_imagef( dest, (int2) (x+, y), sum.s4 );write_imagef( dest, (int2) (x+, y), sum.s5 );\
write_imagef( dest, (int2) (x+, y), sum.s6 );write_imagef( dest, (int2) (x+, y), sum.s7 );\
write_imagef( dest, (int2) (x+, y), sum.s8 );write_imagef( dest, (int2) (x+, y), sum.s9 );\
write_imagef( dest, (int2) (x+, y), sum.sa );write_imagef( dest, (int2) (x+, y), sum.sb );\
write_imagef( dest, (int2) (x+, y), sum.sc );write_imagef( dest, (int2) (x+, y), sum.sd );\
write_imagef( dest, (int2) (x+, y), sum.se );write_imagef( dest, (int2) (x+, y), sum.sf ); float16 line0 = r16(-,y);
for(int j=;j<imgWidth;){
float16 line1 = r16(j-+,y); float16 temp0;
float16 temp1;
temp0 = line0;
temp1.s0123 = line0.sabcd;
temp1.s45 = line0.sef;
temp1.s67 = line1.s01;
temp1.s89abcdef = line1.s23456789;
float16 sum = ( temp0 + temp1 ) * m_nFilter[];
temp0.s0123456789abcdef = temp0.s123456789abcdeff;
temp0.sf = line1.s0;
temp1.s0123456789abcdef = temp1.s00123456789abcde;
temp1.s0 = line0.s9;
sum += ( temp0 + temp1 ) * m_nFilter[];
temp0.s0123456789abcdef = temp0.s123456789abcdeff;
temp0.sf = line1.s1;
temp1.s0123456789abcdef = temp1.s00123456789abcde;
temp1.s0 = line0.s8;
sum += ( temp0 + temp1 ) * m_nFilter[];
temp0.s0123456789abcdef = temp0.s123456789abcdeff;
temp0.sf = line1.s2;
temp1.s0123456789abcdef = temp1.s00123456789abcde;
temp1.s0 = line0.s7;
sum += ( temp0 + temp1 ) * m_nFilter[];
temp0.s0123456789abcdef = temp0.s123456789abcdeff;
temp0.sf = line1.s3;
temp1.s0123456789abcdef = temp1.s00123456789abcde;
temp1.s0 = line0.s6;
sum += ( temp0 + temp1 ) * m_nFilter[];
temp0.s0123456789abcdef = temp0.s123456789abcdeff;
temp0.sf = line1.s4;
sum += ( temp0 ) * m_nFilter[]; line0 = line1;
w16(j,y,sum );
j+=;
} } __kernel __attribute__((work_group_size_hint(,,)))
void ImageGaussianFilterVertical(__read_only image2d_t source, // Source image
__write_only image2d_t dest,
const int imgWidth ,
const int imgHeight)
{
const int x = get_global_id();
if(x>=(imgWidth))
return;
const float m_nFilter[] = {/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0,/256.0}; #define rv16(x,y) (float16)( r(x,y),r(x,y+1),r(x,y+2),r(x,y+3),r(x,y+4),r(x,y+5),r(x,y+6),r(x,y+7),\
r(x,y+),r(x,y+),r(x,y+),r(x,y+),r(x,y+),r(x,y+),r(x,y+),r(x,y+)) #define wv16(x,y,sum) write_imagef( dest, (int2) (x,y), sum.s0 );write_imagef( dest, (int2) (x,y+1), sum.s1 );\
write_imagef( dest, (int2) (x,y+), sum.s2 );write_imagef( dest, (int2) (x,y+), sum.s3 );\
write_imagef( dest, (int2) (x,y+), sum.s4 );write_imagef( dest, (int2) (x,y+), sum.s5 );\
write_imagef( dest, (int2) (x,y+), sum.s6 );write_imagef( dest, (int2) (x,y+), sum.s7 );\
write_imagef( dest, (int2) (x,y+), sum.s8 );write_imagef( dest, (int2) (x,y+), sum.s9 );\
write_imagef( dest, (int2) (x,y+), sum.sa );write_imagef( dest, (int2) (x,y+), sum.sb );\
write_imagef( dest, (int2) (x,y+), sum.sc );write_imagef( dest, (int2) (x,y+), sum.sd );\
write_imagef( dest, (int2) (x,y+), sum.se );write_imagef( dest, (int2) (x,y+), sum.sf ); float16 line0 = rv16(x,-);
for(int j=;j<imgHeight;){
float16 line1 = rv16(x,j-+); float16 temp0;
float16 temp1;
temp0 = line0;
temp1.s0123 = line0.sabcd;
temp1.s45 = line0.sef;
temp1.s67 = line1.s01;
temp1.s89abcdef = line1.s23456789;
float16 sum = ( temp0 + temp1 ) * m_nFilter[];
temp0.s0123456789abcdef = temp0.s123456789abcdeff;
temp0.sf = line1.s0;
temp1.s0123456789abcdef = temp1.s00123456789abcde;
temp1.s0 = line0.s9;
sum += ( temp0 + temp1 ) * m_nFilter[];
temp0.s0123456789abcdef = temp0.s123456789abcdeff;
temp0.sf = line1.s1;
temp1.s0123456789abcdef = temp1.s00123456789abcde;
temp1.s0 = line0.s8;
sum += ( temp0 + temp1 ) * m_nFilter[];
temp0.s0123456789abcdef = temp0.s123456789abcdeff;
temp0.sf = line1.s2;
temp1.s0123456789abcdef = temp1.s00123456789abcde;
temp1.s0 = line0.s7;
sum += ( temp0 + temp1 ) * m_nFilter[];
temp0.s0123456789abcdef = temp0.s123456789abcdeff;
temp0.sf = line1.s3;
temp1.s0123456789abcdef = temp1.s00123456789abcde;
temp1.s0 = line0.s6;
sum += ( temp0 + temp1 ) * m_nFilter[];
temp0.s0123456789abcdef = temp0.s123456789abcdeff;
temp0.sf = line1.s4;
sum += ( temp0 ) * m_nFilter[]; line0 = line1;
wv16(x,j,sum );
j+=;
}
}

opencl gauss filter优化(二)的更多相关文章

  1. opencl gauss filter优化(三)

    1.根据前两次的最终结果: 使用普通buffer,Horizontal 5ms, Vertical 17 ms 使用image buffer:Horizontal 9.4ms, Vertical 6. ...

  2. opencl gauss filter优化(一)

    Platform: LG G3, Adreno 330 ,img size 3264x2448 C code neon GPU 300 60 29 单位:ms 1. 目前按如下行列分解的方式最快29m ...

  3. Anisotropic gauss filter

    最近一直在做版面分析,其中文本行检测方面,许多文章涉及到了Anigauss也就是各向异性高斯滤波. 顾名思义,简单的理解就是参数不同的二维高斯滤波. 在文章Fast Anisotropic Gauss ...

  4. EMW 性能优化二之---并发配置

    EMW 性能优化二之---并发配置 在前一个日志中写到交货的异步更新,对于RFUI RF的前台操作会提升效率,异步更新不用等待更新状态的返回,启用更新队列的方式执行(SM13). 下面再补全性能相关的 ...

  5. MySQL优化二(连接优化和缓存优化)

    body { font-family: Helvetica, arial, sans-serif; font-size: 14px; line-height: 1.6; padding-top: 10 ...

  6. mysql优化二之锁机制

    mysql优化二之锁机制 mysql提供了锁机制和MVCC机制来保证并发操作的安全性,这里主要讨论锁机制, MVCC见下篇文章 mysql的锁按照锁粒度可分为行锁与表锁,按照操作类型划分可读锁和写锁 ...

  7. Emacs 启动优化二三事

    Emacs 启动优化二三事 */--> div.org-src-container { font-size: 85%; font-family: monospace; } p {font-siz ...

  8. MySQL性能优化(二):优化数据库的设计

    原文:MySQL性能优化(二):优化数据库的设计 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.n ...

  9. 二维高斯滤波器(gauss filter)的实现

    我们以一个二维矩阵表示二元高斯滤波器,显然此二维矩阵的具体形式仅于其形状(shape)有关: def gauss_filter(kernel_shape): 为实现二维高斯滤波器,需要首先定义二元高斯 ...

随机推荐

  1. 安装python-devel 在升级到python2.7之后

    分别执行如下命令: # yum update # yum install centos-release-SCL # yum search all python27 在搜索出的列表中发现python27 ...

  2. 短信轰炸PC版

    前言 之前用过android版短信轰炸的apk,于是想反编apk查看源码找短信接口,做一个PC版本的,不料反编失败.后不了了之... 昨日逛论坛时无意中看到一个网站有此功能,打开一试究竟,效果可以,于 ...

  3. Java的Properties类和读取.properties文件

    一..properties文件的作用 Properties属性文件在JAVA应用程序中是经常可以看得见的,也是特别重要的一类文件.它用来配置应用程序的一些信息,不过这些信息一般都是比较少的数据,没有必 ...

  4. Mysql-学习笔记(==》集合函数与分组四)

    -- 聚集函数 配合分组语句 group by-- 显示最高分SELECT MAX(sscore) FROM db.`student`;-- 显示最高分学生的信息min maxSELECT * FRO ...

  5. java-pfx文件转换成16进制内容

    public static void main(String[] args) throws Exception { String path = "D://111.pfx"; Inp ...

  6. 实现Action类

    实现Action类 1.Action类的作用: (1)封装HTTP的请求参数: (2)处理用户请求: (3)封装处理结果. 2.Action类是什么,在Action类中应该包含什么: Action类就 ...

  7. Swift 动画学习笔记

    视频地址: http://www.swiftv.cn/course/i275v5lz 1,动画属性 position(位置),opacity(透明度,0 全透明,1 不透明),Scale(尺寸),Co ...

  8. UVA 1452 八 Jump

    Jump Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit Status Practi ...

  9. 样式表中的 element.style样式如何修改

    我们在写前面 web样式的时候,会发现有些时候,我们怎么修改 style里面的值,页面上的样式都不会修改,当你用工具查看时,会发现里面会有 element.style的值,这个值还找不到是在哪里出现的 ...

  10. 【转】The decoupling capacitor…is it really necessary?

    Before working as an applications engineer, I worked as an IC test development engineer here at TI. ...