LCS (nlogn)
最长上升子序列的O(n*logn)算法分析如下:
先回顾经典的O(n^2)的动态规划算法,设a[t]表示序列中的第t个数,dp[t]表示从1到t这一段中以t结尾的最长上升子序列的长度,初始时设dp [t] = 0(t = 1, 2, ..., len(a))。则有动态规划方程:dp[t] = max{1, dp[j] + 1} (j = 1, 2, ..., t - 1, 且a[j] < a[t])。
现在,我们仔细考虑计算dp[t]时的情况。假设有两个元素a[x]和a[y],满足
(1)x < y < t
(2)a[x] < a[y] < a[t]
(3)dp[x] = dp[y]
此时,选择dp[x]和选择dp[y]都可以得到同样的dp[t]值,那么,在最长上升子序列的这个位置中,应该选择a[x]还是应该选择a[y]呢?
很明显,选择a[x]比选择a[y]要好。因为由于条件(2),在a[x+1] ... a[t-1]这一段中,如果存在a[z],a[x] < a[z] < a[y],则与选择a[y]相比,将会得到更长的上升子序列。
再根据条件(3),我们会得到一个启示:根据dp[]的值进行分类。对于dp[]的每一个取值k,我们只需要保留满足dp[t] = k的所有a[t]中的最小值。设D[k]记录这个值,即D[k] = min{a[t]} (dp[t] = k)。
注意到D[]的两个特点:
(1) D[k]的值是在整个计算过程中是单调不上升的。
(2) D[]的值是有序的,即D[1] < D[2] < D[3] < ... < D[n]。
利用D[],我们可以得到另外一种计算最长上升子序列长度的方法。设当前已经求出的最长上升子序列长度为len。先判断a[t]与D[len]。若a [t] > D[len],则将a[t]接在D[len]后将得到一个更长的上升子序列,len = len + 1, D[len] = a [t];否则,在D[1]..D[len]中,找到最大的j,满足D[j] < a[t]。令k = j + 1,则有a [t] <= D[k],将a[t]接在D[j]后将得到一个更长的上升子序列,更新D[k] = a[t]。最后,len即为所要求的最长上升子序列的长度。
在上述算法中,若使用朴素的顺序查找在D[1]..D[len]查找,由于共有O(n)个元素需要计算,每次计算时的复杂度是O(n),则整个算法的时间复杂度为O(n^2),与原来的算法相比没有任何进步。但是由于D[]的特点(2),我们在D[]中查找时,可以使用二分查找高效地完成,则整个算法的时间复杂度下降为O(nlogn),有了非常显著的提高。需要注意的是,D[]在算法结束后记录的并不是一个符合题意的最长上升子序列!
hdu 1950 Bridging signals
#include<cstdio>
#include<cstring>
#define MAXN 40005 int a[MAXN],D[MAXN],len; int binary_search(int i)
{
int left,right,mid;
left=,right=len;
while(left<right)
{
mid = left+(right-left)/;
if(D[mid]>=a[i]) right=mid;
else left=mid+;
}
return left;
} int main()
{
//freopen("input.txt","r",stdin);
int T,p,i,j,k;
scanf("%d",&T);
while(T--)
{
scanf("%d",&p);
for(i=; i<=p; ++i)
scanf("%d",&a[i]); D[] = a[];
len=;
for(i=; i<=p; ++i)
{
if(a[i]>D[len])
D[++len]=a[i];
else
{
int j=binary_search(i); // 如果用STL: pos=lower_bound(ans,ans+len,arr[i])-ans;
D[j] = a[i];
}
}
printf("%d\n",len);
}
return ;
}
LCS (nlogn)的更多相关文章
- UVa10653.Prince and Princess
题目连接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- O(nlogn)LIS及LCS算法
morestep学长出题,考验我们,第二题裸题但是数据范围令人无奈,考试失利之后,刻意去学习了下优化的算法 一.O(nlogn)的LIS(最长上升子序列) 设当前已经求出的最长上升子序列长度为len. ...
- LIS LCS n^2和nlogn解法 以及LCIS
首先介绍一下LIS和LCS的DP解法O(N^2) LCS:两个有序序列a和b,求他们公共子序列的最大长度 我们定义一个数组DP[i][j],表示的是a的前i项和b的前j项的最大公共子序列的长度,那么由 ...
- uva 10635 Prince and Princess(LCS成问题LIS问题O(nlogn))
标题效果:有两个长度p+1和q+1该序列.的各种元素的每个序列不是相互同.并1~n^2之间的整数.个序列的第一个元素均为1. 求出A和B的最长公共子序列长度. 分析:本题是LCS问题,可是p*q< ...
- O(nlogn)实现LCS与LIS
序: LIS与LCS分别是求一个序列的最长不下降序列序列与两个序列的最长公共子序列. 朴素法都可以以O(n^2)实现. LCS借助LIS实现O(nlogn)的复杂度,而LIS则是通过二分搜索将复杂度从 ...
- 关于LIS和LCS问题的o(nlogn)解法
o(n^2)解法就不赘述了,直接解释o(nlogn)解法 LIS最长递增子序列: 先明确一个结论:在长度最大为len的递增序列里若末尾元素越小,该递增序列越容易和后面的子序列构造出一个更长的递增子序列 ...
- LCS 的 NlogN作法
这个算法其实是因为LIS有NlogN的作法,把LCS转化为了LIS来做. 对于序列A{},B{},我们可以记录下来B中的每个元素在A中出现的位置,按顺序保存在一个新序列当中, 如果有多个位置按倒序写, ...
- LIS与LCS的nlogn解法
LIS(nlogn) #include<iostream> #include<cstdio> using namespace std; ; int a[maxn]; int n ...
- Uva10635 LCS
题目链接:http://vjudge.net/contest/137498#problem/G 题意:有两个长度为p+1和q+1的序列,每个序列的中的各个元素互不相同,且都是1~n^2之间的整.两个序 ...
随机推荐
- QQ2013登录报文简单分析(不可用于非法用途)
[NO.1 2013-05-08 00:31:16 046 SEND 115字节]02 31 03 08 25 27 B5 88 6F 91 D2 03 00 00 00 0101 01 00 00 ...
- C-union的使用
union有两个作用: 1,节约空间,如果一个struct存在两个互斥的变量,则可以把这个struct变成union 2,将同一个内存作为多种解释 代码: #include <iostream& ...
- jsp:useBean标准动作
1.bean法则 JavaBean和企业JavaBean是完全不相干的两个东西.普通的非企业JavaBean需要满足一定的规范才能被JSP和servlet使用: 1)必须有一个无参数的公共构造函数: ...
- 如何在redhat下安装WineQQ
使用过redhat的朋友都知道在redhat下要使用聊天工具例如:腾讯QQ只能是用网页QQ,但网页QQ始终用得不尽人意,下面我将给大家介绍一种在redhat下安装WineQQ的方法,让你能在redha ...
- javaNIO是什么?由那几部分组成?各部分的作用。
Java NIO 由以下几个核心部分组成: Channels Buffers Selectors 虽然Java NIO 中除此之外还有很多类和组件,但在我看来,Channel,Buffer 和 Sel ...
- Spring学习笔记之初始化和销毁方法的调用次序
Multiple lifecycle mechanisms configured for the same bean, with different initialization methods, a ...
- android 原生dialog对话框
http://www.cnblogs.com/xiaoluo501395377/p/3419398.html
- JDBC体会
1.把mysql-connector XXXX版本导入buildpath 2.通过DriverManager 的getConnection 方法获得一个Connnection引用,方法的参数是 url ...
- Android中判断当前网络是否可用
转载原文地址:http://www.cnblogs.com/renqingping/archive/2012/10/18/Net.html 当前有可用网络,如下图: 当前没有可用网络,如下图: 实现步 ...
- 《day13--异常的进阶和包的使用》
//101-finally的使用&102-finally的使用场景 /* 需求:有一些特定的代码,无论异常是否发生,都需要执行, 因为异常会引发程序的跳转,导致有些语句执行不到,无法满足这个需 ...