先感谢参考文献:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html

注:以下讨论的数均为整数

一、欧几里得算法(重点是证明,对后续知识有用)

  欧几里得算法,也叫辗转相除,简称 gcd,用于计算两个整数的最大公约数

  定义 gcd(a,b) 为整数 a 与 b 的最大公约数

  引理:gcd(a,b)=gcd(b,a%b)

  证明:

    设 r=a%b , c=gcd(a,b)

    则 a=xc , b=yc , 其中x , y互质

    r=a%b=a-pb=xc-pyc=(x-py)c

    而b=yc

    可知:y 与 x-py 互质

    证明:

  假设 y 与 x-py 不互质

  设 y=nk , x-py=mk , 且 k>1 (因为互质)

   将 y 带入可得

  x-pnk=mk

  x=(pn+m)k

   则 a=xc=(pn+m)kc , b=yc=nkc

  那么此时 a 与 b 的最大公约数为 kc 不为 k

  与原命题矛盾,则 y 与 x-py 互质

    因为 y 与 x-py 互质,所以 r 与 b 的最大公约数为 c

    即 gcd(b,r)=c=gcd(a,b)

    得证

  当a%b=0时,gcd(a,b)=b

  这样我们可以写成递归形式

 inline int gcd(int a,int b)
{
return b?gcd(b,a%b):a;
}

  模板题:http://codevs.cn/problem/1212/

二、扩展欧几里得算法

  扩展欧几里得算法,简称 exgcd,一般用来求解不定方程,求解线性同余方程,求解模的逆元等

  引理:存在 x , y 使得 gcd(a,b)=ax+by

  证明:

  当 b=0 时,gcd(a,b)=a,此时 x=1 , y=0

  当 b!=0 时,

         设 ax1+by1=gcd(a,b)=gcd(b,a%b)=bx2+(a%b)y2

  又因 a%b=a-a/b*b

  则 ax1+by1=bx2+(a-a/b*b)y2

    ax1+by1=bx2+ay2-a/b*by2

    ax1+by1=ay2+bx2-b*a/b*y2

    ax1+by1=ay2+b(x2-a/b*y2)

    解得 x1=y2 , y1=x2-a/b*y2

    因为当 b=0 时存在 x , y 为最后一组解

    而每一组的解可根据后一组得到

    所以第一组的解 x , y 必然存在

    得证

  根据上面的证明,在实现的时候采用递归做法

  先递归进入下一层,等到到达最后一层即 b=0 时就返回x=1 , y=0

  再根据 x=y’ , y=x’-a/b/y’ ( x’ 与 y’ 为下一层的 x 与 y ) 得到当层的解

  不断算出当层的解并返回,最终返回至第一层,得到原解

 inline void exgcd(int a,int b)
{
if (b)
{
exgcd(b,a%b);
int k=x;
x=y;
y=k-a/b*y;
}
else y=(x=)-;
}

三、exgcd 解不定方程(使用不将a与b转为互质的方法)

  对于 ax+by=c 的不定方程,设 r=gcd(a,b)

  当 c%r!=0 时无整数解

  当 c%r=0 时,将方程右边 *r/c 后转换为 ax+by=r 的形式

  可以根据扩展欧几里得算法求得一组整数解 x0 , y0

  而这只是转换后的方程的解,原方程的一组解应再 *c/r 转变回去

  (如 2x+4y=4 转换为 2x+4y=2 后应再将解得的 x , y 乘上2)

  则原方程解为 x1=x0*c/r , y1=x0*c/r

  通解 x=x1+b/r*t , y=y1-a/r*t ,其中 t 为整数

  证明:

    将 x , y 带入方程得

    ax+ab/r*t+by-ab/r*t=c

    ax+by=c

    此等式恒成立

    得证

  这里 b/r 与 a/r 为最小的系数,所以求得的解是最多最全面的

  证明:

    为了推出证明中的 ax+by=c ,且想达到更小的系数,只能将 b/r 与 a/r 同除以一个数 s

    而 b/r 与 a/r 互质,且 s 为整数,则 s=1 ,不影响通解

    那么 b/r 与 a/r 就为最小的系数

    得证

  模板题:http://www.cnblogs.com/hadilo/p/5917173.html

四、exgcd 解线性同余方程

  关于 x 的模方程 ax%b=c 的解

  方程转换为 ax+by=c 其中 y 一般为非正整数

  则问题变为用 exgcd 解不定方程

  解得 x1=x0*c/r

  通解为 x=x1+b/r*t

  设 s=b/r (已证明 b/r 为通解的最小间隔)

  则 x 的最小正整数解为 (x1%s+s)%s

  证明:

    若 x1>0,则 (x1%s+s)%s=x1%s%s+s%s=x1%s=x1-ts (t∈N)

    若 x1<0,因在 C++ 里 a%b=-(-a%b)<0 (a<0 , b>0)  如 -10%4=-2

         则 (x1%s+s)%s=(-(-x1%s)+s)%s=(-(ts-x1)+s)%s=ts-x1 (t∈N)

    即为 x1 通过加或减上若干个 s 后得到的最小正整数解

    得证

  亦可伪证 x1<0 的情况:设 x1=-5 , s=2

              则 (x1%s+s)%s=(-5%2+2)%2=(-1+2)%2=3%2=1

              即为 x1 加上 3 个 s 后的到的最小正整数解

  模板题:http://www.cnblogs.com/hadilo/p/5951091.html

 

版权所有,转载请联系作者,违者必究

联系方式:http://www.cnblogs.com/hadilo/p/5932395.html

欧几里得算法与扩展欧几里得算法_C++的更多相关文章

  1. 详解扩展欧几里得算法(扩展GCD)

    浅谈扩展欧几里得(扩展GCD)算法 本篇随笔讲解信息学奥林匹克竞赛中数论部分的扩展欧几里得算法.为了更好的阅读本篇随笔,读者最好拥有不低于初中二年级(这是经过慎重考虑所评定的等级)的数学素养.并且已经 ...

  2. 初等数论-Base-2(扩展欧几里得算法,同余,线性同余方程,(附:裴蜀定理的证明))

    我们接着上面的欧几里得算法说 扩展欧几里得算法 扩展欧几里德算法是用来在已知a, b求解一组x,y,使它们满足贝祖等式\(^①\): ax+by = gcd(a, b) =d(解一定存在,根据数论中的 ...

  3. 扩展欧几里得算法(extgcd)

    相信大家对欧几里得算法,即辗转相除法不陌生吧. 代码如下: int gcd(int a, int b){ return !b ? gcd(b, a % b) : a; } 而扩展欧几里得算法,顾名思义 ...

  4. noip知识点总结之--欧几里得算法和扩展欧几里得算法

    一.欧几里得算法 名字非常高大上的不一定难,比如欧几里得算法...其实就是求两个正整数a, b的最大公约数(即gcd),亦称辗转相除法 需要先知道一个定理: gcd(a, b) = gcd(b, a  ...

  5. vijos1009:扩展欧几里得算法

    1009:数论 扩展欧几里得算法 其实自己对扩展欧几里得算法一直很不熟悉...应该是因为之前不太理解的缘故吧这次再次思考,回看了某位大神的推导以及某位大神的模板应该算是有所领悟了 首先根据题意:L1= ...

  6. ****ural 1141. RSA Attack(RSA加密,扩展欧几里得算法)

    1141. RSA Attack Time limit: 1.0 secondMemory limit: 64 MB The RSA problem is the following: given a ...

  7. 浅谈扩展欧几里得算法(exgcd)

    在讲解扩展欧几里得之前我们先回顾下辗转相除法: \(gcd(a,b)=gcd(b,a\%b)\)当a%b==0的时候b即为所求最大公约数 好了切入正题: 简单地来说exgcd函数求解的是\(ax+by ...

  8. (light oj 1306) Solutions to an Equation 扩展欧几里得算法

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1306 You have to find the number of solutions ...

  9. 『扩展欧几里得算法 Extended Euclid』

    Euclid算法(gcd) 在学习扩展欧几里得算法之前,当然要复习一下欧几里得算法啦. 众所周知,欧几里得算法又称gcd算法,辗转相除法,可以在\(O(log_2b)\)时间内求解\((a,b)\)( ...

随机推荐

  1. 09Socket编程

    tcp是基于字节流的,udp是基于报文即数据包的,所以tcp会产生一个叫做粘包的问题,而udp不会产生. 我们这节主要讨论粘包问题: 先看一下粘包问题的原因: 总结如下: 1.应用进程的缓冲区和Soc ...

  2. 【jmeter】属性和变量

    一.Jmeter中的属性: 1.JMeter属性统一定义在jmeter.properties文件中,我们可以在该文件中添加自定义的属性 2.JMeter属性在测试脚本的任何地方都是可见的(全局),通常 ...

  3. golang rbac框架

    在 https://github.com/mikespook/gorbac/tree/v1.0 github上新的版本是开发板,得用这里的老版 demo package main import ( & ...

  4. JavaScript权威指南 第二章 词法结构

    这章主要把保留字说一下 JavaScript 把一些标识符拿出来用做自己的关键字.因此,就不能再在程序中把这些关键字用做标识符了: break delete function return typeo ...

  5. 蜘蛛纸牌存档修改——python3.4.3

    #encoding:utf-8 import struct myfile = open("D:\\Backup\\我的文档\\spider.sav","rb+" ...

  6. 一次非常有意思的 SQL 优化经历

    我用的数据库是mysql5.6,下面简单的介绍下场景 课程表 create table Course( c_id int PRIMARY KEY, name varchar(10) ) 数据100条 ...

  7. Python 结巴分词(1)分词

    利用结巴分词来进行词频的统计,并输出到文件中. 结巴分词github地址:结巴分词 结巴分词的特点: 支持三种分词模式: 精确模式,试图将句子最精确地切开,适合文本分析: 全模式,把句子中所有的可以成 ...

  8. websphere应用程序的使用

    1.服务器板块 1.1 jvm虚拟机的通用参数: agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=7777Dcom.ibm.w ...

  9. centos下安装MySQL5.7

    1.查找mysqlwhereis mysql 2.删除mysqlyum remove mysql mysql-server mysql-libs mysql-server;rm –rf /usr/li ...

  10. 让Chrome可以修改字体

    在chrome地址栏输入chrome://flags/ , 然后将"停用DirectWrite Windows"改为停用 , 这样自定义的字体就可以生效了.