function script_faster_rcnn_demo()
close all; clc; clear mex; clear is_valid_handle; % to clear init_key
run(fullfile(fileparts(fileparts(mfilename('fullpath'))), 'startup'));
%% -------------------- CONFIG --------------------
opts.caffe_version = 'caffe_faster_rcnn';
opts.gpu_id = auto_select_gpu;
active_caffe_mex(opts.gpu_id, opts.caffe_version); opts.per_nms_topN = 6000;
opts.nms_overlap_thres = 0.7;
opts.after_nms_topN = 300;
opts.use_gpu = true; opts.test_scales = 600; %% -------------------- INIT_MODEL --------------------
% model_dir = fullfile(pwd, 'output', 'faster_rcnn_final', 'faster_rcnn_VOC0712_vgg_16layers'); %% VGG-16
model_dir = fullfile(pwd, 'output', 'faster_rcnn_final', 'faster_rcnn_VOC0712_ZF'); %% ZF
proposal_detection_model = load_proposal_detection_model(model_dir); proposal_detection_model.conf_proposal.test_scales = opts.test_scales;
proposal_detection_model.conf_detection.test_scales = opts.test_scales;
if opts.use_gpu
proposal_detection_model.conf_proposal.image_means = gpuArray(proposal_detection_model.conf_proposal.image_means);
proposal_detection_model.conf_detection.image_means = gpuArray(proposal_detection_model.conf_detection.image_means);
end % caffe.init_log(fullfile(pwd, 'caffe_log'));
% proposal net
rpn_net = caffe.Net(proposal_detection_model.proposal_net_def, 'test');
rpn_net.copy_from(proposal_detection_model.proposal_net);
% fast rcnn net
fast_rcnn_net = caffe.Net(proposal_detection_model.detection_net_def, 'test');
fast_rcnn_net.copy_from(proposal_detection_model.detection_net); % set gpu/cpu
if opts.use_gpu
caffe.set_mode_gpu();
else
caffe.set_mode_cpu();
end %% -------------------- WARM UP --------------------
% the first run will be slower; use an empty image to warm up for j = 1:2 % we warm up 2 times
im = uint8(ones(375, 500, 3)*128);
if opts.use_gpu
im = gpuArray(im);
end
[boxes, scores] = proposal_im_detect(proposal_detection_model.conf_proposal, rpn_net, im);
aboxes = boxes_filter([boxes, scores], opts.per_nms_topN, opts.nms_overlap_thres, opts.after_nms_topN, opts.use_gpu);
if proposal_detection_model.is_share_feature
[boxes, scores] = fast_rcnn_conv_feat_detect(proposal_detection_model.conf_detection, fast_rcnn_net, im, ...
rpn_net.blobs(proposal_detection_model.last_shared_output_blob_name), ...
aboxes(:, 1:4), opts.after_nms_topN);
else
[boxes, scores] = fast_rcnn_im_detect(proposal_detection_model.conf_detection, fast_rcnn_net, im, ...
aboxes(:, 1:4), opts.after_nms_topN);
end
end %% -------------------- TESTING --------------------
% im_names = {'001763.jpg', '004545.jpg', '000542.jpg', '000456.jpg', '001150.jpg'};
% these images can be downloaded with fetch_faster_rcnn_final_model.m
image_path = '/media/wangxiao/Elements/image_segment_backup/ImagesData223/Pedestrian/172.19.199.223/';
file1 = dir(image_path); for ii = 3:size(file1, 1)
new_path1 = [image_path, file1(ii).name, '/'];
file2 = dir(new_path1);
for jj = 3:size(file2, 1)
new_path2 = [new_path1, file2(jj).name, '/'];
file3 = dir(new_path2);
for kk = 3:size(file3, 1)
im = imread([new_path2, file3(kk).name]);
running_time = [];
% for j = 1:length(im_names)
% im = imread(fullfile(pwd, im_names{j})); if opts.use_gpu
im = gpuArray(im);
end % test proposal
th = tic();
[boxes, scores] = proposal_im_detect(proposal_detection_model.conf_proposal, rpn_net, im);
t_proposal = toc(th);
th = tic();
aboxes = boxes_filter([boxes, scores], opts.per_nms_topN, opts.nms_overlap_thres, opts.after_nms_topN, opts.use_gpu);
t_nms = toc(th); % test detection
th = tic();
if proposal_detection_model.is_share_feature
[boxes, scores] = fast_rcnn_conv_feat_detect(proposal_detection_model.conf_detection, fast_rcnn_net, im, ...
rpn_net.blobs(proposal_detection_model.last_shared_output_blob_name), ...
aboxes(:, 1:4), opts.after_nms_topN);
else
[boxes, scores] = fast_rcnn_im_detect(proposal_detection_model.conf_detection, fast_rcnn_net, im, ...
aboxes(:, 1:4), opts.after_nms_topN);
end
t_detection = toc(th); % fprintf('%s (%dx%d): time %.3fs (resize+conv+proposal: %.3fs, nms+regionwise: %.3fs)\n', im_names{j}, ...
% size(im, 2), size(im, 1), t_proposal + t_nms + t_detection, t_proposal, t_nms+t_detection);
% running_time(end+1) = t_proposal + t_nms + t_detection; % visualize
classes = proposal_detection_model.classes;
boxes_cell = cell(length(classes), 1);
thres = 0.6;
for i = 1:length(boxes_cell)
boxes_cell{i} = [boxes(:, (1+(i-1)*4):(i*4)), scores(:, i)];
boxes_cell{i} = boxes_cell{i}(nms(boxes_cell{i}, 0.3), :); I = boxes_cell{i}(:, 5) >= thres;
boxes_cell{i} = boxes_cell{i}(I, :);
end
figure(j); [location, label, score] = output(im, boxes_cell, classes, 'voc');
if (score==0)
continue;
else
disp(file3(kk).name);
save(['./mat results/' file3(kk).name '.mat' ], 'location', 'label', 'score', 'im');
end showboxes(im, boxes_cell, classes, 'voc');
pause(0.1);
end
end
end % fprintf('mean time: %.3fs\n', mean(running_time)); caffe.reset_all();
clear mex; end -------------------------------------------------------
--------------------------------------------------------- function proposal_detection_model = load_proposal_detection_model(model_dir)
ld = load(fullfile(model_dir, 'model'));
proposal_detection_model = ld.proposal_detection_model;
clear ld; proposal_detection_model.proposal_net_def ...
= fullfile(model_dir, proposal_detection_model.proposal_net_def);
proposal_detection_model.proposal_net ...
= fullfile(model_dir, proposal_detection_model.proposal_net);
proposal_detection_model.detection_net_def ...
= fullfile(model_dir, proposal_detection_model.detection_net_def);
proposal_detection_model.detection_net ...
= fullfile(model_dir, proposal_detection_model.detection_net); end function aboxes = boxes_filter(aboxes, per_nms_topN, nms_overlap_thres, after_nms_topN, use_gpu)
% to speed up nms
if per_nms_topN > 0
aboxes = aboxes(1:min(length(aboxes), per_nms_topN), :);
end
% do nms
if nms_overlap_thres > 0 && nms_overlap_thres < 1
aboxes = aboxes(nms(aboxes, nms_overlap_thres, use_gpu), :);
end
if after_nms_topN > 0
aboxes = aboxes(1:min(length(aboxes), after_nms_topN), :);
end
end

matlab命令窗口,显示: 刚开始都是正常的,如下:

fast_rcnn startup done
GPU 1: free memory 3824902144
Use GPU 1
Warning: Specified caffe folder (/home/wangxiao/Downloads/faster_rcnn-master/experiments/external/caffe/matlab/caffe_faster_rcnn)
is not exist, change to default one (/home/wangxiao/Downloads/faster_rcnn-master/experiments/external/caffe/matlab)
> In active_caffe_mex at 19
  In ori_demo at 7
20150301095338.jpg
20150301095445.jpg
20150301095535.jpg
20150301095543.jpg
20150301095603.jpg
20150301095613.jpg
20150301095617.jpg
20150301095632.jpg
20150301095635.jpg
20150301095646.jpg
20150301095656.jpg
20150301095659.jpg
20150301095711.jpg
20150301095714.jpg
20150301095717.jpg
20150301095720.jpg
20150301095723.jpg
20150301095726.jpg
20150301095729.jpg
20150301095734.jpg
20150301095741.jpg
20150301095750.jpg

Index exceeds matrix dimensions.

Error in ori_demo (line 114)
        boxes_cell{i} = [boxes(:, (1+(i-1)*4):(i*4)), scores(:, i)];
 

但是,跑着跑着就出问题了,索引超过矩阵维度是什么鬼??只好硬着头皮一句一句的调试了,fuck 。。。。

但是,搞不定啊。。只知道了一个:非极大值抑制(NMS) 

为什么会出错呢??? 之前跑的好好地啊。。。提示超过矩阵范围的那一句是作者自己写的。。。怎么会错呢?怎么会错?怎么会?怎么?怎? ?

不搞了,先把原始的图像,整理成一个文件夹在做处理:

clc; close all;

path = '/media/wangxiao/Elements/image_segment_backup/';
savePath = '/media/wangxiao/Elements/wang xiao/additional_data/';
camera = dir(path); txt_path = '/media/wangxiao/Elements/wang xiao/';
txt_file = fopen([txt_path, 'log_file.txt'], 'a'); for i = 3:length(camera)
disp(['camera ', num2str(i-2), '---']);
fprintf(txt_file, '%s \n ', num2str(i-2));
path2 = [path, camera(i).name, '/'];
file1 = dir(path2);
for ii = 5:size(file1, 1)
disp([' ', file1(ii).name, '---']);
fprintf(txt_file, '%s \n', file1(ii).name);
new_path = [path2, file1(ii).name, '/'];
file2 = dir(new_path);
for j = 3:size(file2, 1)
disp([' ', file2(j).name, '---']);
fprintf(txt_file, '%s \n', file2(j).name);
new_path2 = [new_path, file2(j).name, '/'];
file3 = dir(new_path2);
for k = 3:size(file3, 1)
disp([' ', file3(k).name, '---']);
fprintf(txt_file, '%s \n', file3(k).name);
new_path3 = [new_path2, file3(k).name , '/'];
file4 = dir(new_path3);
for r = 3:size(file4, 1)
disp([' ', file4(r).name, '---']);
fprintf(txt_file, '%s \n', file4(r).name);
new_path4 = [new_path3, file4(r).name, '/'];
file5 = dir(new_path4);
for w = 3:size(file5, 1)
if (imread([new_path4, file5(w).name]))
im = imread([new_path4, file5(w).name]);
imshow(im);
imwrite(im, [savePath, file5(w).name]);
else
continue; end
end
end
end
end
end
end fclose(txt_file);

找到原因了,妈的,原来是因为,输入图像的大小不一致导致的,奇怪了,只要加一句: im = imresize(im, [127 127]); 将输入的图像统一resize成 固定的大小,即可。。。简单 粗暴 但是,不解其惑 。。。。

...

Faster RCNN 运行自己的数据,刚开始正常,后来就报错: Index exceeds matrix dimensions. Error in ori_demo (line 114) boxes_cell{i} = [boxes(:, (1+(i-1)*4):(i*4)), scores(:, i)];的更多相关文章

  1. caffe学习三:使用Faster RCNN训练自己的数据

    本文假设你已经完成了安装,并可以运行demo.py 不会安装且用PASCAL VOC数据集的请看另来两篇博客. caffe学习一:ubuntu16.04下跑Faster R-CNN demo (基于c ...

  2. 使用idea 在springboot添加本地jar包的方法本地运行有效,一旦需要打jar就会报错,这就需要在

    https://blog.csdn.net/huxiaodong1994/article/details/80702278 1.首先在与src同级的目录下新建一个lib目录,然后将本地jar包放在li ...

  3. 选iphone5可以正常编译运行 , 但是5s和6和6s都会编译报错

    选iphone5可以正常编译运行   但是5s和6和6s都会编译报错 iphone6编译报错iphone5s编译报错 解决办法是,Build settings里面把Architectures里面的$( ...

  4. 前端ajax用post方式提交json数据给后端时,网络报错 415

    项目框架:spring+springmvc+mybatis 问题描述:前端ajax用post方式提交json数据给后端时,网络报错 415 前端异常信息:Failed to load resource ...

  5. faster rcnn 源码学习-------数据读入及RoIDataLayer相关模块解读

    参考博客:::https://www.cnblogs.com/Dzhen/p/6845852.html 非常全面的解读参考:::https://blog.csdn.net/DaVinciL/artic ...

  6. python3 + Tensorflow + Faster R-CNN训练自己的数据

    之前实现过faster rcnn, 但是因为各种原因,有需要实现一次,而且发现许多博客都不全面.现在发现了一个比较全面的博客.自己根据这篇博客实现的也比较顺利.在此记录一下(照搬). 原博客:http ...

  7. python运行报错:urllib2.URLError: <urlopen error [Errno 10061] >

    Traceback (most recent call last): File "F:\adt-bundle-windows-x86_64-20140702\eclipse\workspac ...

  8. 连接数据后,当执行查询语句报错:ORA-01219: 数据库未打开: 仅允许在固定表/视图中查询

    参考博客:http://blog.csdn.net/lanchengxiaoxiao/article/details/40982771 1.在cmd窗口通过sqlplus连接数据库 C:\Users\ ...

  9. react-native学习(RN)--之Window环境下搭建环境配置,以及初始化建立react-native项目,(真机和模拟器运行的相关错误解决办法,android打包报错)

    react-native以后会更火的 一.安装java 二.安装Android Studio 三.安装react-native需要的Android studio额外部分 四.安装nodeJS  五.安 ...

随机推荐

  1. (转)Ratchet教程:meta与link标签

    原文:http://www.w3cplus.com/mobile/meta-and-link-tags-for-ratchet.html Ratchet教程:meta与link标签           ...

  2. ubuntu  输入时弹出剪切板候选项

    fcitx很坑的把这个功能的快捷键设置成了ctrl + ;结果我在用vim的时候怎么也 没法输入command 不知道是哪次更新引入的,简直是坑人! 我找了半天系统设置都没找到这个快捷键是在哪设置的. ...

  3. XMLParser解析xml--内容源自网络(在静态库中不能用GDATA来解析,因为静态库不能加动态库)

    </Books> 从其文档结构我们可以看出,要定义一个Book实体类描述具体的书籍信息,其中用于存储的相关xml文档元素的实例变量与对应元素同名(本例:title.author.summa ...

  4. [数据结构]KMP小结

    KMP小结   By Wine93 2013.9 1.学习链接: http://www.matrix67.com/blog/archives/115 2.个人小结 1.KMP在字符串中匹配中起着巨大作 ...

  5. IFrame 获取内容

    试试: iframe.contentwindow.document.documentElement.innerHTML   document.getElementById("MyIFrame ...

  6. 有趣的数-回文数(Palindrome number)

    文章转自http://blog.163.com/hljmdjlln@126/blog/static/5473620620120412525181/ 做LC上的题"Palindrome num ...

  7. python 处理异常

    try: ...(主要动作,试着执行的程序代码,如果引发异常,执行第一个复合引发异常的except下面的语句.如果没有符合的,就会终止程序,打印出错!) except name:(except 分句的 ...

  8. 用 GitHub 来部署静态网页 ꒰・◡・๑꒱

    http://segmentfault.com/a/1190000002765287 在尝试过用 GitHub 部署静态 HTML 网页后,觉得其实挺容易的,这里简单说说如何用 GitHub 来完成部 ...

  9. ~0u >> 1

    ~ 逐位求反u 后辍为 定义unsigned类型>>右移如在32系统中,连起来就是 将32位的0取反后 右移一位.也就是 int 的最大值 2147482347

  10. UVa 11729 - Commando War

    [题目翻译]: 题目分析:因为任务是可以并行的执行,所以直觉上是花费时间长的任务优先去部署.但是这到题目还给你交待任务的时间,所以容易让人想多了. 不管有没有交待任务的时间,对于任务x和y,只可能有两 ...