Faster RCNN 运行自己的数据,刚开始正常,后来就报错: Index exceeds matrix dimensions. Error in ori_demo (line 114) boxes_cell{i} = [boxes(:, (1+(i-1)*4):(i*4)), scores(:, i)];
function script_faster_rcnn_demo()
close all; clc; clear mex; clear is_valid_handle; % to clear init_key
run(fullfile(fileparts(fileparts(mfilename('fullpath'))), 'startup'));
%% -------------------- CONFIG --------------------
opts.caffe_version = 'caffe_faster_rcnn';
opts.gpu_id = auto_select_gpu;
active_caffe_mex(opts.gpu_id, opts.caffe_version); opts.per_nms_topN = 6000;
opts.nms_overlap_thres = 0.7;
opts.after_nms_topN = 300;
opts.use_gpu = true; opts.test_scales = 600; %% -------------------- INIT_MODEL --------------------
% model_dir = fullfile(pwd, 'output', 'faster_rcnn_final', 'faster_rcnn_VOC0712_vgg_16layers'); %% VGG-16
model_dir = fullfile(pwd, 'output', 'faster_rcnn_final', 'faster_rcnn_VOC0712_ZF'); %% ZF
proposal_detection_model = load_proposal_detection_model(model_dir); proposal_detection_model.conf_proposal.test_scales = opts.test_scales;
proposal_detection_model.conf_detection.test_scales = opts.test_scales;
if opts.use_gpu
proposal_detection_model.conf_proposal.image_means = gpuArray(proposal_detection_model.conf_proposal.image_means);
proposal_detection_model.conf_detection.image_means = gpuArray(proposal_detection_model.conf_detection.image_means);
end % caffe.init_log(fullfile(pwd, 'caffe_log'));
% proposal net
rpn_net = caffe.Net(proposal_detection_model.proposal_net_def, 'test');
rpn_net.copy_from(proposal_detection_model.proposal_net);
% fast rcnn net
fast_rcnn_net = caffe.Net(proposal_detection_model.detection_net_def, 'test');
fast_rcnn_net.copy_from(proposal_detection_model.detection_net); % set gpu/cpu
if opts.use_gpu
caffe.set_mode_gpu();
else
caffe.set_mode_cpu();
end %% -------------------- WARM UP --------------------
% the first run will be slower; use an empty image to warm up for j = 1:2 % we warm up 2 times
im = uint8(ones(375, 500, 3)*128);
if opts.use_gpu
im = gpuArray(im);
end
[boxes, scores] = proposal_im_detect(proposal_detection_model.conf_proposal, rpn_net, im);
aboxes = boxes_filter([boxes, scores], opts.per_nms_topN, opts.nms_overlap_thres, opts.after_nms_topN, opts.use_gpu);
if proposal_detection_model.is_share_feature
[boxes, scores] = fast_rcnn_conv_feat_detect(proposal_detection_model.conf_detection, fast_rcnn_net, im, ...
rpn_net.blobs(proposal_detection_model.last_shared_output_blob_name), ...
aboxes(:, 1:4), opts.after_nms_topN);
else
[boxes, scores] = fast_rcnn_im_detect(proposal_detection_model.conf_detection, fast_rcnn_net, im, ...
aboxes(:, 1:4), opts.after_nms_topN);
end
end %% -------------------- TESTING --------------------
% im_names = {'001763.jpg', '004545.jpg', '000542.jpg', '000456.jpg', '001150.jpg'};
% these images can be downloaded with fetch_faster_rcnn_final_model.m
image_path = '/media/wangxiao/Elements/image_segment_backup/ImagesData223/Pedestrian/172.19.199.223/';
file1 = dir(image_path); for ii = 3:size(file1, 1)
new_path1 = [image_path, file1(ii).name, '/'];
file2 = dir(new_path1);
for jj = 3:size(file2, 1)
new_path2 = [new_path1, file2(jj).name, '/'];
file3 = dir(new_path2);
for kk = 3:size(file3, 1)
im = imread([new_path2, file3(kk).name]);
running_time = [];
% for j = 1:length(im_names)
% im = imread(fullfile(pwd, im_names{j})); if opts.use_gpu
im = gpuArray(im);
end % test proposal
th = tic();
[boxes, scores] = proposal_im_detect(proposal_detection_model.conf_proposal, rpn_net, im);
t_proposal = toc(th);
th = tic();
aboxes = boxes_filter([boxes, scores], opts.per_nms_topN, opts.nms_overlap_thres, opts.after_nms_topN, opts.use_gpu);
t_nms = toc(th); % test detection
th = tic();
if proposal_detection_model.is_share_feature
[boxes, scores] = fast_rcnn_conv_feat_detect(proposal_detection_model.conf_detection, fast_rcnn_net, im, ...
rpn_net.blobs(proposal_detection_model.last_shared_output_blob_name), ...
aboxes(:, 1:4), opts.after_nms_topN);
else
[boxes, scores] = fast_rcnn_im_detect(proposal_detection_model.conf_detection, fast_rcnn_net, im, ...
aboxes(:, 1:4), opts.after_nms_topN);
end
t_detection = toc(th); % fprintf('%s (%dx%d): time %.3fs (resize+conv+proposal: %.3fs, nms+regionwise: %.3fs)\n', im_names{j}, ...
% size(im, 2), size(im, 1), t_proposal + t_nms + t_detection, t_proposal, t_nms+t_detection);
% running_time(end+1) = t_proposal + t_nms + t_detection; % visualize
classes = proposal_detection_model.classes;
boxes_cell = cell(length(classes), 1);
thres = 0.6;
for i = 1:length(boxes_cell)
boxes_cell{i} = [boxes(:, (1+(i-1)*4):(i*4)), scores(:, i)];
boxes_cell{i} = boxes_cell{i}(nms(boxes_cell{i}, 0.3), :); I = boxes_cell{i}(:, 5) >= thres;
boxes_cell{i} = boxes_cell{i}(I, :);
end
figure(j); [location, label, score] = output(im, boxes_cell, classes, 'voc');
if (score==0)
continue;
else
disp(file3(kk).name);
save(['./mat results/' file3(kk).name '.mat' ], 'location', 'label', 'score', 'im');
end showboxes(im, boxes_cell, classes, 'voc');
pause(0.1);
end
end
end % fprintf('mean time: %.3fs\n', mean(running_time)); caffe.reset_all();
clear mex; end -------------------------------------------------------
--------------------------------------------------------- function proposal_detection_model = load_proposal_detection_model(model_dir)
ld = load(fullfile(model_dir, 'model'));
proposal_detection_model = ld.proposal_detection_model;
clear ld; proposal_detection_model.proposal_net_def ...
= fullfile(model_dir, proposal_detection_model.proposal_net_def);
proposal_detection_model.proposal_net ...
= fullfile(model_dir, proposal_detection_model.proposal_net);
proposal_detection_model.detection_net_def ...
= fullfile(model_dir, proposal_detection_model.detection_net_def);
proposal_detection_model.detection_net ...
= fullfile(model_dir, proposal_detection_model.detection_net); end function aboxes = boxes_filter(aboxes, per_nms_topN, nms_overlap_thres, after_nms_topN, use_gpu)
% to speed up nms
if per_nms_topN > 0
aboxes = aboxes(1:min(length(aboxes), per_nms_topN), :);
end
% do nms
if nms_overlap_thres > 0 && nms_overlap_thres < 1
aboxes = aboxes(nms(aboxes, nms_overlap_thres, use_gpu), :);
end
if after_nms_topN > 0
aboxes = aboxes(1:min(length(aboxes), after_nms_topN), :);
end
end
matlab命令窗口,显示: 刚开始都是正常的,如下:
fast_rcnn startup done
GPU 1: free memory 3824902144
Use GPU 1
Warning: Specified caffe folder (/home/wangxiao/Downloads/faster_rcnn-master/experiments/external/caffe/matlab/caffe_faster_rcnn)
is not exist, change to default one (/home/wangxiao/Downloads/faster_rcnn-master/experiments/external/caffe/matlab)
> In active_caffe_mex at 19
In ori_demo at 7
20150301095338.jpg
20150301095445.jpg
20150301095535.jpg
20150301095543.jpg
20150301095603.jpg
20150301095613.jpg
20150301095617.jpg
20150301095632.jpg
20150301095635.jpg
20150301095646.jpg
20150301095656.jpg
20150301095659.jpg
20150301095711.jpg
20150301095714.jpg
20150301095717.jpg
20150301095720.jpg
20150301095723.jpg
20150301095726.jpg
20150301095729.jpg
20150301095734.jpg
20150301095741.jpg
20150301095750.jpg
Index exceeds matrix dimensions.
Error in ori_demo (line 114)
boxes_cell{i} = [boxes(:, (1+(i-1)*4):(i*4)), scores(:, i)];
但是,跑着跑着就出问题了,索引超过矩阵维度是什么鬼??只好硬着头皮一句一句的调试了,fuck 。。。。
但是,搞不定啊。。只知道了一个:非极大值抑制(NMS)
为什么会出错呢??? 之前跑的好好地啊。。。提示超过矩阵范围的那一句是作者自己写的。。。怎么会错呢?怎么会错?怎么会?怎么?怎? ?
不搞了,先把原始的图像,整理成一个文件夹在做处理:
clc; close all; path = '/media/wangxiao/Elements/image_segment_backup/';
savePath = '/media/wangxiao/Elements/wang xiao/additional_data/';
camera = dir(path); txt_path = '/media/wangxiao/Elements/wang xiao/';
txt_file = fopen([txt_path, 'log_file.txt'], 'a'); for i = 3:length(camera)
disp(['camera ', num2str(i-2), '---']);
fprintf(txt_file, '%s \n ', num2str(i-2));
path2 = [path, camera(i).name, '/'];
file1 = dir(path2);
for ii = 5:size(file1, 1)
disp([' ', file1(ii).name, '---']);
fprintf(txt_file, '%s \n', file1(ii).name);
new_path = [path2, file1(ii).name, '/'];
file2 = dir(new_path);
for j = 3:size(file2, 1)
disp([' ', file2(j).name, '---']);
fprintf(txt_file, '%s \n', file2(j).name);
new_path2 = [new_path, file2(j).name, '/'];
file3 = dir(new_path2);
for k = 3:size(file3, 1)
disp([' ', file3(k).name, '---']);
fprintf(txt_file, '%s \n', file3(k).name);
new_path3 = [new_path2, file3(k).name , '/'];
file4 = dir(new_path3);
for r = 3:size(file4, 1)
disp([' ', file4(r).name, '---']);
fprintf(txt_file, '%s \n', file4(r).name);
new_path4 = [new_path3, file4(r).name, '/'];
file5 = dir(new_path4);
for w = 3:size(file5, 1)
if (imread([new_path4, file5(w).name]))
im = imread([new_path4, file5(w).name]);
imshow(im);
imwrite(im, [savePath, file5(w).name]);
else
continue; end
end
end
end
end
end
end fclose(txt_file);
找到原因了,妈的,原来是因为,输入图像的大小不一致导致的,奇怪了,只要加一句: im = imresize(im, [127 127]); 将输入的图像统一resize成 固定的大小,即可。。。简单 粗暴 但是,不解其惑 。。。。
...
Faster RCNN 运行自己的数据,刚开始正常,后来就报错: Index exceeds matrix dimensions. Error in ori_demo (line 114) boxes_cell{i} = [boxes(:, (1+(i-1)*4):(i*4)), scores(:, i)];的更多相关文章
- caffe学习三:使用Faster RCNN训练自己的数据
本文假设你已经完成了安装,并可以运行demo.py 不会安装且用PASCAL VOC数据集的请看另来两篇博客. caffe学习一:ubuntu16.04下跑Faster R-CNN demo (基于c ...
- 使用idea 在springboot添加本地jar包的方法本地运行有效,一旦需要打jar就会报错,这就需要在
https://blog.csdn.net/huxiaodong1994/article/details/80702278 1.首先在与src同级的目录下新建一个lib目录,然后将本地jar包放在li ...
- 选iphone5可以正常编译运行 , 但是5s和6和6s都会编译报错
选iphone5可以正常编译运行 但是5s和6和6s都会编译报错 iphone6编译报错iphone5s编译报错 解决办法是,Build settings里面把Architectures里面的$( ...
- 前端ajax用post方式提交json数据给后端时,网络报错 415
项目框架:spring+springmvc+mybatis 问题描述:前端ajax用post方式提交json数据给后端时,网络报错 415 前端异常信息:Failed to load resource ...
- faster rcnn 源码学习-------数据读入及RoIDataLayer相关模块解读
参考博客:::https://www.cnblogs.com/Dzhen/p/6845852.html 非常全面的解读参考:::https://blog.csdn.net/DaVinciL/artic ...
- python3 + Tensorflow + Faster R-CNN训练自己的数据
之前实现过faster rcnn, 但是因为各种原因,有需要实现一次,而且发现许多博客都不全面.现在发现了一个比较全面的博客.自己根据这篇博客实现的也比较顺利.在此记录一下(照搬). 原博客:http ...
- python运行报错:urllib2.URLError: <urlopen error [Errno 10061] >
Traceback (most recent call last): File "F:\adt-bundle-windows-x86_64-20140702\eclipse\workspac ...
- 连接数据后,当执行查询语句报错:ORA-01219: 数据库未打开: 仅允许在固定表/视图中查询
参考博客:http://blog.csdn.net/lanchengxiaoxiao/article/details/40982771 1.在cmd窗口通过sqlplus连接数据库 C:\Users\ ...
- react-native学习(RN)--之Window环境下搭建环境配置,以及初始化建立react-native项目,(真机和模拟器运行的相关错误解决办法,android打包报错)
react-native以后会更火的 一.安装java 二.安装Android Studio 三.安装react-native需要的Android studio额外部分 四.安装nodeJS 五.安 ...
随机推荐
- Design Patterns
经典的<设计模式>一书归纳出23种设计模式,本文按<易学设计模式>一书归纳分类如下:1.创建型模式 前面讲过,社会化的分工越来越细,自然在软件设计方面也是如此,因此对象的创建和 ...
- UIApplication 概述
原文地址:http://blog.csdn.net/lixing333/article/details/7777015 以前刚学iPhone开发时,觉得UIApplication这个东西特NB,特神秘 ...
- lower_bound和upper_bound算法
参考:http://www.cnblogs.com/cobbliu/archive/2012/05/21/2512249.html ForwardIter lower_bound(ForwardIte ...
- 12、C#基础整理(结构体)
结构体 1.概念: 结构体是写在main函数外的数据结构,由不同类型的数据组合成一个整体,这些组合在一个整体中的数据是互相联系的 2.声明方式: struct 结构体名 { 成员变量(由类型名+成员名 ...
- wdatepicker minDate&maxDate
示例4-3-2 前面的日期+3天 不能大于 后面的日期 日期从 到 <input type="text" class="Wdate" id ...
- Unity3D ShaderLab法线贴图
Unity3D ShaderLab法线贴图 说到法线贴图,应该算是我们最常使用的一种增强视觉效果的贴图.将法线贴图的各个像素点座位模型的法线,这样我们的光照可以模拟出高分辨率的效果, 同时也保持较低的 ...
- Azure Automation:存储帐户之间blob拷贝
在两个存储帐户之间进行blob拷贝,在客户端,使用Azue PowerShell脚本, 用存储帐户上下文(New-AzureStorageContext)来获取某个StorageAccount中的Co ...
- Windows Server 2008 R2: 创建任务计划
task Scheduler 在业务复杂的应用程序中,有时候会要求一个或者多个任务在一定的时间或者一定的时间间隔内计划进行,比如定时备份或同步数据库,定时发送电子邮件等. 创建一个任务计划: 开始St ...
- 3des加解密算法
编号:1003时间:2016年4月1日09:51:11功能:openssl_3des加解密算法http://blog.csdn.net/alonesword/article/details/17385 ...
- MapBox TileMill
TileMill 学习网站: Walkthrough: Creating tiles with Mapnik using TileMill TileMill 快速入门 Cartography With ...