原博文出自于:  http://blog.fens.me/hadoop-mahout-roadmap/        感谢!

Mahout学习路线图

Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项目包括,YARN, Hcatalog, Oozie, Cassandra, Hama, Whirr, Flume, Bigtop, Crunch, Hue等。

从2011年开始,中国进入大数据风起云涌的时代,以Hadoop为代表的家族软件,占据了大数据处理的广阔地盘。开源界及厂商,所有数据软件,无一不向Hadoop靠拢。Hadoop也从小众的高富帅领域,变成了大数据开发的标准。在Hadoop原有技术基础之上,出现了Hadoop家族产品,通过“大数据”概念不断创新,推出科技进步。

作为IT界的开发人员,我们也要跟上节奏,抓住机遇,跟着Hadoop一起雄起!

关于作者:

  • 张丹(Conan), 程序员Java,R,PHP,Javascript
  • weibo:@Conan_Z
  • blog: http://blog.fens.me
  • email: bsspirit@gmail.com

转载请注明出处:
http://blog.fens.me/hadoop-mahout-roadmap/

前言

Mahout是Hadoop家族中与众不同的一个成员,是基于一个Hadoop的机器学习和数据挖掘的分布式计算框架。Mahout是一个跨学科产品,同时也是我认为Hadoop家族中,最有竞争力,最难掌握,最值得学习的一个项目之一。

Mahout为数据分析人员,解决了大数据的门槛;为算法工程师,提供基础的算法库;为Hadoop开发人员,提供了数据建模的标准;为运维人员,打通了和Hadoop连接。

Mahout就是训象人,在Hadoop上创造新的智慧!

目录

  1. Mahout介绍
  2. Mahout学习路线图
  3. 我的学习经历
  4. Mahout的使用案例

1. Mahout介绍

Mahout 是基于Hadoop的机器学习和数据挖掘的一个分布式框架。Mahout用MapReduce实现了部分数据挖掘算法,解决了并行挖掘的问题。

根据”Mahout In Action”书中的介绍,Mahout实现3大类算法, 推荐(Recommendation),聚类(Clustering),分类(Classification)。

下文介绍的学习路线图,将以”Mahout In Action”书中思路展张。

2. Mahout学习路线图

Mahout知识点,我已经列在图中,希望帮助其他人更好的了解Mahout。

接下来,是我的学习经历,谁都没有捷径。把心踏实下来,就不那么难了。

3. 我的学习经历

之前,大概花了半年的时间,专门研究过Mahout,当时Mahout的资料非常少,中文资料更是仅仅几篇。直到发现了“Mahout In Action”如获至宝,开始反复地读。先不着急上手去做什么,一遍一遍地读。直到读完3遍,心理才有了一点把握。

从“推荐”算法开始,UserCF, ItemCF。 记得第一次在公司给小组讲的时候,还设计了一份问卷,我列出了10个网站,(其中6个IT大站,2个个人blog,2个社交类社区),分别让大家去投票,0-5分,0为不知道,1-5为对网站喜爱程序。

问卷结果格式:

user1, website1, 5
user1, website2, 2
user1, website3, 4
user2, website3, 2
user3, website3, 5
user4, website3, 0
…..

通过这个问卷来模拟尝试Mahout的推荐模型!计算的结果对大家来说,都是比较奇怪。为什么会有这样的推荐呢。 然后,深入Mahout源代码,看算法的实现,知道了相似度矩阵,距离算法,推荐算法,模型验证等,不同业务要求,不同的算法调用,对结果都是有影响的。把书中所有的的概念,关键词都整理过(可惜当时没写博客)。整整花了3个月,每天12个小时的强度,把推荐部分完整地学下来了。

然后,应用到实际业务中。我的任务是做“职位推荐”,我只有用户浏览职位,收藏职位,申请职位的行为数据。

第一次尝试,直接套用推荐模型,但结果非常之差。
出现问题的原因是有2点:

  • 1. 职位是有时效性的,每个职位可能3个月就会过期:推荐结果包含了很多的过期职位。
  • 2. 大量的用户行为都是历史的,甚至是2-3年前的:推荐结果不符合用户的预期。我估计每半年用户的职位都可能有上升,所以历史行为是不能直接用于当前用户的计算。

修改方案:
1. 对用户行为数据集进行过滤,只计算最近半年内的用户行为。
2. 对结果集进行过滤,排除过期的职位。
3. 分别用不同的算法模型计算(我记得Tanimoto的Item Base结果最好)

对于推荐结果有了大幅度的提升。故事到此就结束了!虽然我还做了更多的事情,不过这个产品由于公司结构性调整,最终没有上线。(程序员的悲哀!)

聚类模型,我把这个算法 应用在网站用户的活跃度分析。假设一个网站,注册用户1000W,每天登陆的1W。我们想了解一下,未登陆的999W用户有什么特点!!用到Mahout的k-means和Canopy做聚类,假设1000W的用户可能可以划分为5个大的群体。最后我们得到了一个结果,分享到了团队。故事又到此结束了。(实现就是这么悲哀!)

分类模型,我尝试着用Native Bayes对我的个人邮件进行垃圾分类。按机器学习的操作流程,历史数据健分词后,训练分类器,每天时时的数据通过分类器进行判断。整个自动化过程都已经完成。故事又结束了!(接受现实吧。)

其实还有一些,我争取都整理出来。

Mahout是有一定的学习门槛,而且需要跨学科的知识。只要坚持学习,没有跨不过的鸿沟!乐观努力!

4. Mahout的使用案例

已经整理成文章的案例

正在准备更多的案例…..

相关文章:
Hadoop家族产品学习路线图

转载请注明出处:
http://blog.fens.me/hadoop-mahout-roadmap/

转】Mahout学习路线图的更多相关文章

  1. mahout第一篇-----Mahout学习路线图

    Mahout学习路线图 前言 Mahout是Hadoop家族中与众不同的一个成员,是基于一个Hadoop的机器学习和数据挖掘的分布式计算框架.Mahout是一个跨学科产品,同时也是我认为Hadoop家 ...

  2. Mahout学习路线图

    转自:http://blog.fens.me/hadoop-mahout-roadmap/ Mahout学习路线图 Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, ...

  3. Mahout学习路线图-张丹老师

    前言 Mahout是Hadoop家族中与众不同的一个成员,是基于一个Hadoop的机器学习和数据挖掘的分布式计算框架.Mahout是一个跨学科产品,同时也是我认为Hadoop家族中,最有竞争力,最难掌 ...

  4. Hadoop学习路线图

    Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项目包括, ...

  5. Hadoop家族学习路线图--转载

    原文地址:http://blog.fens.me/hadoop-family-roadmap/ Sep 6, 2013 Tags: Hadoophadoop familyroadmap Comment ...

  6. Hadoop家族学习路线图

    主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项 ...

  7. Hadoop家族学习路线图v

    主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项 ...

  8. Hive学习路线图(转)

    Hadoophivehqlroadmap学习路线图   1 Comment Hive学习路线图 Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig ...

  9. 【转】Hive学习路线图

    原文博客出自于:http://blog.fens.me/hadoop-hive-roadmap/ 感谢! Hive学习路线图 Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Ha ...

随机推荐

  1. 一些数论概念与算法——从SGU261谈起

    话说好久没来博客上面写过东西了,之前集训过于辛苦了,但有很大的收获,我觉得有必要把它们拿出来总结分享.之前一直是个数论渣(小学初中没好好念过竞赛的缘故吧),经过一道题目对一些基础算法有了比较深刻的理解 ...

  2. hdu1050(贪心)

    囧 . 想了好久,一开始想的是一个连通图怎样用黑白两色染色,想了各种算法发现都不好做,然后灵机一动这不是网路流吗,然后想怎么建图,如果转换成网络流这题就好做了,建图加个二分应该就可以解决了,最后又发现 ...

  3. 属性readwrite,readonly,assign,retain,copy,nonatomic

    copy:建立一个索引计数为1的对象,然后释放旧对象 对NSString对NSString 它指出,在赋值时使用传入值的一份拷贝.拷贝工作由copy方法执行,此属性只对那些实行了NSCopying协议 ...

  4. Android中的Drawable资源

    在Android应用中,常常会用到Drawable资源,比如图片资源等,在Android开发中我们是用Drawable类来Drawable类型资源的. Drawable资源一般存储在应用程序目录的\r ...

  5. 【英语】Bingo口语笔记(74) - put系列

  6. 【转】iOS 开发之协议protocal-代理传值delegate

    原文网址:http://www.cnblogs.com/wzrong/p/3201938.html 刚开始做iOS开发的时候,对 protocol.delegate 的理解一直都是晕晕乎乎一知半解的状 ...

  7. 【转】安装Django

    原文网址:http://www.crifan.com/record_install_django/ 1.参考Quick install guide,最终找到下载的地址: http://bitnami. ...

  8. Android之Socket群组聊天

    在这只做了一个简单的例子,没有用到数据库,思路就是客户端发送信息到服务器端,服务器端转发所有数据到客户端,校验服务器端发来消息是否是自己发出的,如果是自己发出的,则不显示自己的消息 贴一下Androi ...

  9. Image.FromFile 方法锁住文件解决方法

    Image.FromFile  一旦使用后,对应的文件在一直调用 其生成的Image对象被Disponse前都不会被解除锁定,这就造成了一个问题,就是在这个图形被解锁前无法对图像进行操作(比如删除,修 ...

  10. 对于REST中无状态(stateless)的一点认识

    今天早上在Yahoo的邮件列表里看到一篇颇有意思的讨论,标题为RESTful vs. unRESTful: Session IDs and Authentication(51CTO编者注:意为REST ...