[POI2002][HAOI2007]反素数
题意
想法
证明这样一个结论
对于一个可行的反素数\(p\)
\(p = \sum_{i}^{k} p_{k} ^ {c_k}\) 当 \(p_i > p_j 有 c_i < c_j\)
反证法
若\(p_i > p_j 有 c_i > c_j\)则交换\(c_i 与 c_j\)得到一个新数\(s\)
此时知\(s < p\ and \ g(p) = g(s)\)
不符
代码
就12个素数位,完全可以爆搜
代码就不放了
[POI2002][HAOI2007]反素数的更多相关文章
- Luogu P1463 [POI2002][HAOI2007]反素数【数论/dfs】By cellur925
题目传送门 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1 ...
- 洛谷 P1463 [POI2002][HAOI2007]反素数
题目链接 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1, ...
- [POI2002][HAOI2007]反素数 数论 搜索 好题
题目描述: 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1,2,4, ...
- 数学结论【p1463】[POI2002][HAOI2007]反素数
Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数 ...
- [POI2002][HAOI2007]反素数(Antiprime)
题目链接 这道题需要用到整数唯一分解定理以及约数个数的计算公式.这里我就不再阐述了. 公式可以看出,只有指数影响约数个数,那么在唯一分解出的乘式中,指数放置的任何位置都是等价的.(即 23*34*57 ...
- 【题解】洛谷P1463 [POI2002][HAOI2007] 反素数(约数个数公式+搜索)
洛谷P1463:https://www.luogu.org/problemnew/show/P1463 思路 约数个数公式 ai为质因数分解的质数的指数 定理: 设m=2a1*3a2*...*pak ...
- 【BZOJ1053】[HAOI2007]反素数 (搜索+数论)
\([POI2002][HAOI2007]\)反素数 题目描述 对于任何正整数x,其约数的个数记作\(g(x)\).例如\(g(1)=1.g(6)=4\). 如果某个正整数x满足:\(g(x)> ...
- BZOJ 1053: [HAOI2007]反素数ant dfs
1053: [HAOI2007]反素数ant 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1053 Description 对于任何正整 ...
- bzoj1053: [HAOI2007]反素数ant
51nod有一道类似的题...我至今仍然不会写暴搜!!! #include<cstdio> #include<cstring> #include<iostream> ...
随机推荐
- Poetry(1)Poetry介绍与安装
介绍 Poetry 是Python 中的依赖管理和打包工具,当然它也可以配置虚拟环境.它允许您声明项目所依赖的库,并为您管理(安装/更新)它们. 之前一直使用virtualenvwrapper管理虚拟 ...
- 初学python-day2 字符串格式化1
- 解决Mybatis 报错Invalid bound statement (not found)
解决Mybatis 报错Invalid bound statement (not found) 出现此错误的原因 1.xml文件不存在 2.xml文件和mapper没有映射上 namespace指定映 ...
- Beta_Scrum Meeting_2
会议概要 日期:2021年5月30日 出席人员:除zwh以外的所有人员 会议概述:讨论前两天工作进度以及后两天工作计划 人员分工 组员 负责 前两日完成的工作 后两日即将完成的工作 遇到的困难 hcc ...
- Oracle 11g 常用sql记录
--表备份 create table xxx_bak as select * from xxx; --表数据清除 truncate table xxx --锁表问题处理sql开始 select ses ...
- 【做题记录】[NOI2008] 假面舞会—有向图上的环与最长链
luogu 1477 [NOI2008] 假面舞会 容易发现: 如果图中没有环,那么面具种数一定是所有联通块内最长链之和,最少为 \(3\) . 如果有环,则面具种数一定是所有环的大小的最大公约数. ...
- TT模板的作用及使用
一.假如你在ef中添加一个实体,没有模板,你需要在DAL层中新建一个"莫某Dal"和"I某某Dal"以及在公共的DbSession中加你的这个dal,然后需要在 ...
- Android DataBinding使用详解
简介 DataBinding是一个自动绑定UI的框架. 使用DataBinding需要在app根目录的build.gradle文件中加入DataBinding配置: android { .... da ...
- Codeforces Round #738 (Div. 2) D2题解
D2. Mocha and Diana (Hard Version) 至于D1,由于范围是1000,我们直接枚举所有的边,看看能不能加上去就行,复杂度是\(O(n^2logn)\).至于\(n\)到了 ...
- .net core 和 WPF 开发升讯威在线客服系统:把 .Net Framework 打包进安装程序
本系列文章详细介绍使用 .net core 和 WPF 开发 升讯威在线客服与营销系统 的过程. 系列文章目录: https://blog.shengxunwei.com/Home/Post/44a3 ...