题意

反素数

想法

证明这样一个结论

对于一个可行的反素数\(p\)

\(p = \sum_{i}^{k} p_{k} ^ {c_k}\) 当 \(p_i > p_j 有 c_i < c_j\)

反证法

若\(p_i > p_j 有 c_i > c_j\)则交换\(c_i 与 c_j\)得到一个新数\(s\)

此时知\(s < p\ and \ g(p) = g(s)\)

不符

代码

就12个素数位,完全可以爆搜

代码就不放了

[POI2002][HAOI2007]反素数的更多相关文章

  1. Luogu P1463 [POI2002][HAOI2007]反素数【数论/dfs】By cellur925

    题目传送门 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1 ...

  2. 洛谷 P1463 [POI2002][HAOI2007]反素数

    题目链接 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1, ...

  3. [POI2002][HAOI2007]反素数 数论 搜索 好题

    题目描述: 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1,2,4, ...

  4. 数学结论【p1463】[POI2002][HAOI2007]反素数

    Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数 ...

  5. [POI2002][HAOI2007]反素数(Antiprime)

    题目链接 这道题需要用到整数唯一分解定理以及约数个数的计算公式.这里我就不再阐述了. 公式可以看出,只有指数影响约数个数,那么在唯一分解出的乘式中,指数放置的任何位置都是等价的.(即 23*34*57 ...

  6. 【题解】洛谷P1463 [POI2002][HAOI2007] 反素数(约数个数公式+搜索)

    洛谷P1463:https://www.luogu.org/problemnew/show/P1463 思路 约数个数公式  ai为质因数分解的质数的指数 定理: 设m=2a1*3a2*...*pak ...

  7. 【BZOJ1053】[HAOI2007]反素数 (搜索+数论)

    \([POI2002][HAOI2007]\)反素数 题目描述 对于任何正整数x,其约数的个数记作\(g(x)\).例如\(g(1)=1.g(6)=4\). 如果某个正整数x满足:\(g(x)> ...

  8. BZOJ 1053: [HAOI2007]反素数ant dfs

    1053: [HAOI2007]反素数ant 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1053 Description 对于任何正整 ...

  9. bzoj1053: [HAOI2007]反素数ant

    51nod有一道类似的题...我至今仍然不会写暴搜!!! #include<cstdio> #include<cstring> #include<iostream> ...

随机推荐

  1. 初学Python-day11 函数4

    函数 1.递归函数 自己不断调用自己的过程 2.递归求和 1 def sum(arg): 2 if arg == 1: 3 return 1 4 return arg + sum(arg - 1) 5 ...

  2. Redis 高阶数据类型重温

    今天这个专题接着上一篇 Redis 的基本数据类型 继续讲解剩下的高阶数据类型:BitMap.HyperLogLog 和 GEO hash.这些数据结构的底层也都是基于我们前面说的 5 种 基本类型, ...

  3. Vue3学习(七)之 列表界面数据展示

    一.前言 昨晚可能是因为更新完文章后,导致过于兴奋睡不着(写代码确实太容易让人兴奋了),结果两点多才睡着,大东北果然还是太冷了. 不知道是不是因为膝盖和脚都是冰凉的,所以才导致很晚才能入睡? 刚眯了一 ...

  4. 【UE4 C++】 SaveGame 存档/读档

    创建 SaveGame 类 继承自 USaveGame UCLASS() class TIPS_API USimpleSaveGame : public USaveGame { GENERATED_B ...

  5. 第五次Alpha Scrum Meeting

    本次会议为Alpha阶段第五次Scrum Meeting会议 会议概要 会议时间:2021年4月30日 会议地点:线上会议 会议时长:15min 会议内容简介:本次会议以主要围绕卡牌对接的诸多问题与对 ...

  6. cURL 命令获取本机外网 IP

    1.1 查询本机外网 IP # curl dhcp.cn 134.175.159.160 1.2 输出格式为 JSON # curl dhcp.cn/?json { "IP": & ...

  7. 两个栈实现队列 牛客网 剑指Offer

    两个栈实现队列 牛客网 剑指Offer 题目描述 用两个栈来实现一个队列,完成队列的Push和Pop操作. 队列中的元素为int类型. class Solution: def __init__(sel ...

  8. django HTML 数据处理

    一.介绍 dgango  HTML 对 各种数据类型数据的调用展示 的个人工作总结 二.数据处理 1.元祖数据   t1 =('a','b','c',) 示例:    {{ t1.0 }}    {{ ...

  9. java 垃圾回收及内存分配策略

    一.在垃圾收集器对堆进行回收前,首先需要判断对象是否"存活",对已经"死去"的对象进行回收 判断对象是否存活:引用计数法和可达性分析法 引用计数法:给对象添加一 ...

  10. 三、其他主机安装zabbix-agent加入到zabbix

    一.yum (rpm)方式 1,下载安装对应的zabbix-agent的rpm包 rpm -Uvh  https://repo.zabbix.com/zabbix/4.0/rhel/7/x86_64/ ...