由于是排列,即任意两个数字都各不相同,因此字典序最大的$q_{i}$就是将每一段的第一个数从大到小排序

接下来,考虑第一个元素,也就是每一段开头的最大值,分类讨论:

1.当$p_{1}\le k$时,取$1,2,...,k$为每一段开头是唯一一种可以使$q_{i}$以$k$为开头的方案(证明略)

2.当$p_{1}>k$时,假设这$k$个块的开头依次为$a_{1},a_{2},...,a_{k}$(其中$a_{1}=1$),将其按照开头的数字从大到小排序后,依次为$b_{1},b_{2},...,b_{k}$

考虑$a_{i}$和$b_{i}$的最长公共前缀,假设为$l$(即$\forall 1\le i\le l,a_{i}=b_{i}$且$a_{l+1}\ne b_{l+1}$),根据$b$是$a$排序得到,那么$l$还可以用另一种方式来描述:最大的$l$满足$p_{a_{1}}>p_{a_{2}}>...>p_{a_{l}}>\max_{i=l+1}^{k}p_{a_{i}}$

更进一步的,注意下面这两个性质:

1.$q_{i}$的字典序是随着$k$的减小而单调不增的,即在同样的情况下,我们希望$k$小(当$k$缩小时,只需要将任意两段合并,$q_{i}$字典序显然不增)

2.取$k=1$时即$q=p$,根据性质1即可得$q\ge p$,那么$q_{i}$最小的必要条件是其与$p_{i}$的最长公共前缀最长

继续前面的思路,不难发现$a_{l+1}-1$其实就是这一组$p_{i}$和$q_{i}$的最长公共前缀长度,而如果已经(暴力枚举)确定了$l$、$a_{l}$以及$a_{l+1}$,那么问题即变为:

选择一个长度为$l$且以1为开头、$a_{l}$为结尾的递减序列,并对$p_{a_{l+1}},p_{a_{l+1}+1},...,p_{n}$这个序列划分为$k-l$段,要求在每一段开头都小于$p_{a_{l}}$的基础上最小化字典序

当$a_{l}$确定时,我们是希望$l$尽量大的,而这个$l$也就是最长下降子序列,$o(n\log n)$预处理出来

更进一步的,在$l$和$a_{l}$确定后,我们希望$a_{l+1}$尽量大,考虑如何判定一个$a_{l+1}$是否合法,只需要满足:1.$p_{a_{l+1}}<p_{a_{l}}$;2.在$p_{a_{l+1}},p_{a_{l+1}+1},...,p_{n}$中存在$k-l$个数比$p_{a_{l}}$小

更具体的,所谓$a_{l+1}$其实就是在$p_{n}$往前,第$k-l$个比$p_{a_{l}}$小的数,那么其之后(包括其自身)恰好存在$k-l$个比$p_{a_{l}}$小的数,必然以这些数为开头,即确定了划分的方案

关于如何找到$a_{l+1}$,将1到$n$每一个数在$p_{i}$中的位置依次插入,插入时末尾第$k-l$小即为答案,用线段树维护并在其上二分即可

找到$a_{l+1}$后,实际上这最后的$k-l$个数也可以看作$p_{a_{l+1}},p_{a_{l+1}+1},...,p_{n}$中最小的$k-l$个数,那么显然我们仍然可以在$a_{l+1}$最大的情况下找到最大的$l$即可

总复杂度即$o(n\log n)$,可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 200005
4 #define L (k<<1)
5 #define R (L+1)
6 #define mid (l+r>>1)
7 int n,k,a[N],pos[N],dp[N],nex[N],b[N],f[N<<2];
8 void update1(int k,int l,int r,int x,int y){
9 if (l==r){
10 f[k]=y;
11 return;
12 }
13 if (x<=mid)update1(L,l,mid,x,y);
14 else update1(R,mid+1,r,x,y);
15 f[k]=max(f[L],f[R]);
16 }
17 int query1(int k,int l,int r,int x,int y){
18 if ((l>y)||(x>r))return -0x3f3f3f3f;
19 if ((x<=l)&&(r<=y))return f[k];
20 return max(query1(L,l,mid,x,y),query1(R,mid+1,r,x,y));
21 }
22 void update2(int k,int l,int r,int x){
23 f[k]++;
24 if (l==r)return;
25 if (x<=mid)update2(L,l,mid,x);
26 else update2(R,mid+1,r,x);
27 }
28 int query2(int k,int l,int r,int x){
29 if (l==r)return l;
30 if (x<=f[R])return query2(R,mid+1,r,x);
31 return query2(L,l,mid,x-f[R]);
32 }
33 int main(){
34 scanf("%d%d",&n,&k);
35 for(int i=1;i<=n;i++)scanf("%d",&a[i]);
36 for(int i=1;i<=n;i++)pos[a[i]]=i;
37 if (a[1]<=k){
38 for(int i=k;i;i--){
39 printf("%d ",i);
40 for(int j=pos[i]+1;(j<=n)&&(a[j]>k);j++)printf("%d ",a[j]);
41 }
42 return 0;
43 }
44 memset(f,-0x3f,sizeof(f));
45 for(int i=1;i<=n;i++){
46 dp[i]=query1(1,1,n,a[i]+1,n)+1;
47 if (a[i]<=a[1])dp[i]=max(dp[i],1);
48 update1(1,1,n,a[i],dp[i]);
49 }
50 for(int i=1;i<=n;i++)
51 if (dp[i]>=k){
52 for(int j=1;j<=n;j++)printf("%d ",a[j]);
53 return 0;
54 }
55 memset(f,0,sizeof(f));
56 for(int i=1;i<=n;i++){
57 nex[pos[i]]=query2(1,1,n,k-dp[pos[i]]);
58 if (nex[pos[i]]<pos[i])nex[pos[i]]=0;
59 update2(1,1,n,pos[i]);
60 }
61 for(int i=1;i<=n;i++)nex[0]=max(nex[0],nex[i]);
62 for(int i=1;i<=n;i++)
63 if (nex[i]==nex[0])dp[0]=max(dp[0],dp[i]);
64 for(int i=1;i<nex[0];i++)printf("%d ",a[i]);
65 for(int i=nex[0];i<=n;i++)b[i-nex[0]]=a[i];
66 sort(b,b+n-nex[0]+1);
67 for(int i=k-dp[0]-1;i>=0;i--){
68 printf("%d ",b[i]);
69 for(int j=pos[b[i]]+1;(j<=n)&&(a[j]>b[k-dp[0]-1]);j++)printf("%d ",a[j]);
70 }
71 }

[atARC114F]Permutation Division的更多相关文章

  1. python from __future__ import division

    1.在python2 中导入未来的支持的语言特征中division(精确除法),即from __future__ import division ,当我们在程序中没有导入该特征时,"/&qu ...

  2. Permutation Sequence

    The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  3. [LeetCode] Evaluate Division 求除法表达式的值

    Equations are given in the format A / B = k, where A and B are variables represented as strings, and ...

  4. [LeetCode] Palindrome Permutation II 回文全排列之二

    Given a string s, return all the palindromic permutations (without duplicates) of it. Return an empt ...

  5. [LeetCode] Palindrome Permutation 回文全排列

    Given a string, determine if a permutation of the string could form a palindrome. For example," ...

  6. [LeetCode] Permutation Sequence 序列排序

    The set [1,2,3,…,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  7. [LeetCode] Next Permutation 下一个排列

    Implement next permutation, which rearranges numbers into the lexicographically next greater permuta ...

  8. Leetcode 60. Permutation Sequence

    The set [1,2,3,-,n] contains a total of n! unique permutations. By listing and labeling all of the p ...

  9. 关于分工的思考 (Thoughts on Division of Labor)

    Did you ever have the feeling that adding people doesn't help in software development? Did you ever ...

随机推荐

  1. (Java)面向对象的三大特征

    封装.继承与多态 封装 封装的作用(好处) 提高程序安全性,保护数据 隐藏代码的实现细节 统一接口 增加系统可维护性 属性私有(关键字private) 加上Private可使该属性私有于一个类,在其他 ...

  2. .NET Reflector软件破解

    转自:https://blog.csdn.net/zxy13826134783/article/details/89057871 软件和注册机下载地址: 链接:https://pan.baidu.co ...

  3. Powerful Number 学习笔记

    定义 对于一个正整数 \(n\) ,若完全分解之后不存在指数 \(=1\) ,则称 \(n\) 为 \(\text{Powerful Number}\) . 可以发现的是,在 \([1,n]\) 中, ...

  4. XiaoXin 13Pro-Hackintosh 小新13pro崇尚极简的黑苹果双系统

    Lenovo XiaoXin-13-Pro-Hackintosh 关键词:Hackintosh XiaoXin EFI Tutorial Lenovo 以下提及的EFI及其他部分文件见github仓库 ...

  5. UI BLOCK自定义枚举控件的宽度

    三步: 1.修改PresentationStyle属性为Radio Box 2.修改NumberOfColumns属性为指定的宽度(显示字符的个数) 3.将PresentationStyle属性改回O ...

  6. Visual Studio CMake 项目和 WSL

    Visual Studio CMake 项目和 WSL https://devblogs.microsoft.com/cppblog/c-with-visual-studio-2019-and-win ...

  7. QG-2019-AAAI-Improving Neural Question Generation using Answer Separation

    Improving Neural Question Generation using Answer Separation 本篇是2019年发表在AAAI上的一篇文章.该文章在基础的seq2seq模型的 ...

  8. zip和flatMap没有生效

    在Reactor 中flatMap和zip等没有生效 1.一个简单的示例代码如下: 2.示例运行结果 3.得到结论 最近在项目中使用了 Project Reactor ,但发现代码在写着写着有些地方没 ...

  9. Go语言核心36讲(Go语言进阶技术八)--学习笔记

    14 | 接口类型的合理运用 前导内容:正确使用接口的基础知识 在 Go 语言的语境中,当我们在谈论"接口"的时候,一定指的是接口类型.因为接口类型与其他数据类型不同,它是没法被实 ...

  10. 色彩滤镜矩阵(Color Filter Array)

    数码相机上的每个象素都带有一个光感应器,用以测量光线的明亮程度.由于光电二极管是只支持单颜色的装置,它不能区别不同波长的光线.因此,数码相机工程师在相机感应器的上部装上了一套镶嵌式的颜色滤镜,一个颜色 ...