[bzoj3171]循环格
如果把这个矩阵看成一张图,题目相当于要求每一个点的入度和出度都是1(也就是有很多环),否则指向环的点就无法走回自己了
将所有点拆成两个,S向原来的点流(1,0)的边,拆出来的点向T连(1,0)的边,然后每一个点指向初始方向上的点(1,0)的边,指向非初始方向上(1,1)的边,求最小费用最大流即可(也就是让其满足此条件)
1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 1005
4 struct ji{
5 int nex,to,len,cost;
6 }edge[N<<2];
7 queue<int>q;
8 int E,n,m,x,y,ans,dx[4]={-1,0,0,1},dy[4]={0,-1,1,0},head[N],vis[N],d[N],from[N];
9 char c[4]={'U','L','R','D'},s[N];
10 int id(int x,int y){
11 return x*m+y+1;
12 }
13 void add(int x,int y,int z,int w){
14 edge[E].nex=head[x];
15 edge[E].to=y;
16 edge[E].len=z;
17 edge[E].cost=w;
18 head[x]=E++;
19 if (E&1)add(y,x,0,-w);
20 }
21 bool spfa(){
22 memset(d,0x3f,sizeof(d));
23 memset(vis,0,sizeof(vis));
24 q.push(0);
25 d[0]=0;
26 while (!q.empty()){
27 int k=q.front();
28 q.pop();
29 for(int i=head[k];i!=-1;i=edge[i].nex){
30 int v=edge[i].to;
31 if ((edge[i].len)&&(d[v]>d[k]+edge[i].cost)){
32 from[v]=i;
33 d[v]=d[k]+edge[i].cost;
34 if (!vis[v]){
35 vis[v]=1;
36 q.push(v);
37 }
38 }
39 }
40 vis[k]=0;
41 }
42 return d[2*n*m+1]<0x3f3f3f3f;
43 }
44 int main(){
45 scanf("%d%d",&n,&m);
46 memset(head,-1,sizeof(head));
47 for(int i=0;i<n;i++)
48 for(int j=0;j<m;j++){
49 add(0,id(i,j),1,0);
50 add(id(i,j)+n*m,2*n*m+1,1,0);
51 }
52 for(int i=0;i<n;i++){
53 scanf("%s",s);
54 for(int j=0;j<m;j++)
55 for(int k=0;k<4;k++){
56 x=(i+dx[k]+n)%n;
57 y=(j+dy[k]+m)%m;
58 add(id(i,j),id(x,y)+n*m,1,(c[k]!=s[j]));
59 }
60 }
61 while (spfa()){
62 ans+=d[2*n*m+1];
63 for(int i=2*n*m+1;i;i=edge[from[i]^1].to){
64 edge[from[i]].len--;
65 edge[from[i]^1].len++;
66 }
67 }
68 printf("%d",ans);
69 }
[bzoj3171]循环格的更多相关文章
- BZOJ3171 Tjoi2013 循环格
传送门 Description 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为(0,0).给定一个起始位置(r,c) ,你可以沿着箭头 ...
- [TJOI2013]循环格 费用流 BZOJ3171
题目背景 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为(0,0).给定一个起始位(r,c),你可以沿着箭头方向在格子间行走.即:如果 ...
- 【BZOJ3171】[TJOI2013] 循环格(网络流)
点此看题面 大致题意: 给你一个循环格,每个格子有一个方向.问你至少修改多少格子,才能使从每个格子出发都能回到原格子. 建图 这是道网络流题目,主要就是考虑如何建图. 我们可以把每个点拆成两个点,一个 ...
- 【bzoj3171】[Tjoi2013]循环格
题目描述: 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为(0,0).给定一个起始位置(r,c) ,你可以沿着箭头防线在格子间行走.即 ...
- bzoj 3171: [Tjoi2013]循环格
#include<cstdio> #include<iostream> #include<cstring> #define M 10000 #define inf ...
- 【BZOJ】【3171】【TJOI2013】循环格
网络流/费用流 最后能走回出发点……说明全部是环= = 而二分图上的环说明什么呢……完备匹配 对于每个点,它都有四个可能的匹配点,且已知它已经(伪)匹配的一个点,那么我们于已知每条(伪)匹配边,我们连 ...
- 【BZOJ 3171】 [Tjoi2013]循环格
Description 一个循环格就是一个矩阵,其中所有元素为箭头,指向相邻四个格子.每个元素有一个坐标(行,列),其中左上角元素坐标为(0,0).给定一个起始位置(r,c) ,你可以沿着箭头防线在格 ...
- Bzoj 3171: [Tjoi2013]循环格 费用流
3171: [Tjoi2013]循环格 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 741 Solved: 463[Submit][Status][ ...
- [Tjoi2013]循环格
[Tjoi2013]循环格 2014年3月18日1,7500 Description Input 第一行两个整数R,C.表示行和列,接下来R行,每行C个字符LRUD,表示左右上下. Output 一个 ...
随机推荐
- a标签刷新当前页面
<a href="javascript:location.reload();">刷新页面</a>
- iOS自定义拍照框拍照&裁剪(一)
卡片机时代 很重要的一点是,相机本身是没有方向概念的,它不理解拍摄的内容,只会以相机自己的坐标系去保存数据,下图展示了相机对"F"进行四个角度拍摄时返回的图片数据. 最初的卡片机时 ...
- ssh 批量免密登陆
SSH第一次连接远程主机 公钥交换原理 1.客户端发起链接请求2.服务端返回自己的公钥,以及一个会话ID(这一步客户端得到服务端公钥)3.客户端生成密钥对4.客户端用自己的公钥异或会话ID,计算出一个 ...
- uoj167 元旦老人与汉诺塔(记忆化搜索)
QwQ太懒了,题目直接复制uoj的了 QwQ这个题可以说是十分玄学的一道题了 首先可以暴搜,就是\(dfs\)然后模拟每个过程是哪个柱子向哪个柱子移动 不多解释了,不过实现起来还是有一点点难度的 直接 ...
- Jenkins 进阶篇 - 单元测试覆盖率
我们做项目开发,肯定免不了要写单元测试,不管是 Java 项目.Python 项目.PHP 项目,甚至是 nodejs 项目,都应该要写单元测试,本小节就来介绍单元测试的覆盖率报告输出和展示,在后面的 ...
- Java(31)泛型和可变参数
作者:季沐测试笔记 原文地址:https://www.cnblogs.com/testero/p/15228443.html 博客主页:https://www.cnblogs.com/testero ...
- 内网渗透DC-2靶场通关(CTF)
为了更好的阅读体验,请在pc端打开我的个人博客 DC系列共9个靶场,本次来试玩一下DC-2,共有5个flag,下载地址. 下载下来后是 .ova 格式,建议使用vitualbox进行搭建,vmware ...
- java的加载与执行原理剖析
到目前为止,我们接触过的重点术语,总结一下: Java体系的技术被划分为三大块: JavaSE:标准版 JavaEE:企业版 JavaME:微型版 安装JDK之后: JDK:java开发工具箱 JRE ...
- win10安装git fatal: open /dev/null or dup failed: No such file or directory错误解决方法
原因看大家意思应该是 非即插即用驱动文件null.sys问题. 网上有很多方案.最后试了一个可行的. 替换 windows/system32/drivers/null.sys为网盘中的文件即可. 链 ...
- Alpha阶段初始任务分配
项目 内容 这个作业属于哪个课程 2021春季软件工程(罗杰 任健) 这个作业的要求在哪里 团队项目-计划-Alpha阶段说明书 一.Alpha阶段总体规划 进行服务器相关部署 进行开发相关技术学习 ...