[loj3367]装饼干
先考虑如何判定一个$y$是否可行——从高位开始,记录这一位所需要的$2^{i}$数量$t$,若$y$的这一位为1,则$t+=x$,之后分两类讨论:1.$t\le a_{i}$,令$t=0$;2.$b>a_{i}$,令$t=2(t-a_{i})$,记比较之前的$t$为$b_{i}$,最终,我们需要让$b_{0}\le a_{0}$
考虑dp,设$f[i]$表示仅考虑$y$的第$[i,k)$位,且满足$b_{i}\le a_{i}$的$y$的数量,那么答案即为$f[0]$
枚举$j$表示上一个满足$b_{j}\le a_{j}$的位置,那么要满足$\forall j<k< i,b_{j}>a_{j}$且$b_{i}\le a_{i}$
假设$y$的第$j-1$到$i$位依次为$p_{i},...,p_{j-1}$,则有$b_{k}=\sum_{l=k}^{j-1}xp_{l}\cdot 2^{l-k}-\sum_{l=k+1}^{j-1}a_{l}\cdot 2^{l-k}$,由于后者为常数,不妨记为$C_{k}$,则要求$\forall j<k<i,\sum_{l=k}^{j-1}xp_{l}\cdot 2^{l-k}> \frac{C_{k}+a_{k}}{x}$且$\sum_{l=i}^{j-1}xp_{l}\cdot 2^{l-i}\le \frac{C_{i}+a_{i}}{x}$
对于第一个条件,$\sum_{l=i}^{j-1}p_{l}\cdot 2^{l-i}$越大越容易实现,因此可以给出这个值的下限,第二个条件又给出了上限,上限-下限+1即为答案
有两个细节问题:1.$y$的位数不一定为$k$,因此要补0到60位;2.上限要对$2^{j-i}-1$取$min$,若下限>上限则不可能出现这种情况,即对0取max
这样暴力计算时间复杂度为$o(qk^{3})$,发现$C_{k}$与$i$无关,因此可以优化到$o(qk^{2})$
1 #include "biscuits.h"
2 #include<bits/stdc++.h>
3 using namespace std;
4 #define ll long long
5 int n;
6 ll f[105];
7 ll count_tastiness(ll x,vector<ll>a){
8 while (a.size()<60)a.push_back(0);
9 n=60;
10 memset(f,0,sizeof(f));
11 f[n]=1;
12 for(int i=n-1;i>=0;i--)
13 for(int j=i+1;j<=n;j++){
14 ll mn=0,mx=0;
15 for(int k=j-1;k>=i;k--){
16 mx=mx*2+a[k];
17 if (k>i)mn=max(mn,((mx/x+1)<<(k-i)));
18 }
19 f[i]+=f[j]*max(min(mx/x,(1LL<<j-i)-1)-mn+1,0LL);
20 }
21 return f[0];
22 }
[loj3367]装饼干的更多相关文章
- 程序员装B指南
一.准备工作 "工欲善其事必先利其器." 1.电脑不一定要配置高,但是双屏是必须的,越大越好,能一个横屏一个竖屏更好.一个用来查资料,一个用来写代码.总之要显得信息量很大,效率很高 ...
- LinuxMint装JDK和Eclipse
Linux Mint 装JDK和Eclipse 前言 在尝试了好几个发行版后终于锁定了Linux Mint Cinnamon .那么就得配置好环境了. 这里讲一下JAVA环境,配置JDK和Eclips ...
- VS2015安装之后加装SQL SERVER2014的步骤
网上一直说的是先安装SQL Server 2014,再安装VS2015,软件就不会出现问题.我这次在什么都没准备的情况下安装了VS2015,安装之后发觉VS2015自带的SQL2014只有连接服务器和 ...
- ubuntu 14.04 desktop装vnc4server
ubuntu 14.04 desktop上安装vnc4server要装上gnome的一些软件包并修改启动文件~/.vnc/xstartup 问题来源How to make VNC Server wor ...
- [LeetCode] Container With Most Water 装最多水的容器
Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai). ...
- 如何装最多的水? — leetcode 11. Container With Most Water
炎炎夏日,还是呆在空调房里切切题吧. Container With Most Water,题意其实有点噱头,简化下就是,给一个数组,恩,就叫 height 吧,从中任选两项 i 和 j(i <= ...
- 装X代码
装X代码 http://hackcode.ishoulu.com/scp/ http://hackcode.ishoulu.com/umbrella/ http://hackcode.ishoulu. ...
- Dell R730 配置完RAID后装系统找不到硬盘。
1. 各硬盘只是灯都正常.硬件无故障. 2. 8个600G硬盘做的RAID0和RAID5后都在装系统选盘处找不到硬盘.(注意: 第一次做raid 时,没有进行初始化init.后补做也无效,一直复现这个 ...
- acm的ubuntu (ubuntu16.04 安装指南,chrome安装,vim配置,git设置和github,装QQ)
日常手贱把ubuntu14.04更新到了16.04,然后就game over了.mdzz,不然泥萌也看不到这篇博客了=.= 然后花了些时间重装了一个16.04版的,原来那个14.04的用可以用,就是动 ...
随机推荐
- 微软发布了Visual Studio 2022 RC版,并将在11月8日发布正式版
微软今天发布了Visual Studio 2022 最接近正式发布的RC版本,同时宣布在11月8日发布正式版,届时将在线上发布虚拟的发布活动,具体参见:https://devblogs.microso ...
- Kubernetes-Service介绍(二)-服务发现
前言 本篇是Kubernetes第九篇,大家一定要把环境搭建起来,看是解决不了问题的,必须实战. Kubernetes系列文章: Kubernetes介绍 Kubernetes环境搭建 Kuberne ...
- 【数据结构与算法Python版学习笔记】查找与排序——散列、散列函数、区块链
散列 Hasing 前言 如果数据项之间是按照大小排好序的话,就可以利用二分查找来降低算法复杂度. 现在我们进一步来构造一个新的数据结构, 能使得查找算法的复杂度降到O(1), 这种概念称为" ...
- 大闸蟹的OO第二单元总结
OO的第二单元是讲多线程的协作与控制,三次作业分别为FAFS电梯,ALS电梯和三部需要协作的电梯.三次作业由浅入深,让我们逐渐理解多线程的工作原理和运行状况. 第一次作业: 第一次作业是傻瓜电梯,也就 ...
- Netty:Netty的介绍以及它的核心组件(二)—— ChannelFuture与回调
Callback 回调 一个 Callback(回调)就是一个方法,一个提供给另一个的方法的引用. 这让另一个方法可以在适当的时候回过头来调用这个 callback 方法.Callback 在很多编程 ...
- 算法:杨辉三角(Pascal's Triangle)
一.杨辉三角介绍 杨辉三角形,又称帕斯卡三角形.贾宪三角形.海亚姆三角形.巴斯卡三角形,是二项式系数的一种写法,形似三角形,在中国首现于南宋杨辉的<详解九章算法>得名,书中杨辉说明是引自贾 ...
- linux下使用shell命令通过wpa_cli控制wpa_supplicant连接wifi
最近在调试wifi,已经把wpa_supplicant 工具编译打包好了,为了测试wif驱动及wifi模块是否ok,需要用shell命令临时启动wifi服务连接wifi热点测试. 首先板子启动用ifc ...
- 最后的OI(HAOI2020游记)
马上就省选了,怎么不得写点什么?要不然到最后或许就真的落得个白茫茫大地真干净的局面. 其实也不知道该说啥?我这一路走来,感觉挺赚的. 每一个OIer背后都有一个故事,所以,我有故事,你有酒吗? 依稀记 ...
- Luogu P2982 [USACO10FEB]慢下来 Slowing down | dfs序、线段树
题目链接 题目大意: 有一棵N个结点树和N头奶牛,一开始所有奶牛都在一号结点,奶牛们将按从编号1到编号N的顺序依次前往自己的目的地,求每头奶牛在去往自己目的地的途中将会经过多少已经有奶牛的结点. 题解 ...
- 二层组网AP上线
一.实验目的 1)掌握配置WLAN源接口的命令 2)掌握配置DHCP服务器的命令 3)掌握手工确认AP上线的方法a 二.实验仪器设备及软件 仪器设备:一台AC,四台AP 软件:ENSP 三.实验原理 ...